• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 9
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 22
  • 22
  • 21
  • 20
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Development and explicit integration of a thermo-mechanical model for saturated clays / Développement et intégration explicite d'un modèle thermo-mécanique des argiles saturées

Hong, Peng-Yun 27 March 2013 (has links)
Cette étude est consacrée à la modélisation du comportement thermo-mécanique des argiles raides saturées et au développement d'un algorithme d'intégration efficace de contrainte correspondant. Le comportement mécanique de l'argile de Boom naturelle dans des conditions isothermes a été caractérisé. Le modèle Cam Clay modifié (MCC) a été ensuite appliquée pour simuler le comportement de l'argile de Boom naturel. Il a été constaté que le MCC donne des prédictions de mauvaise qualité pour le comportement de l'argile de Boom naturel. Ainsi, un modèle Cam Clay (ACC-2) adapté a été développé en introduisant une nouvelle surface de charge et un nouveau potentiel plastique ainsi que d'un mécanisme plastique de Deux surfaces. Ce modèle permet la description satisfaisante des caractéristiques principales du comportement mécanique de l'argile de Boom naturelle. De plus, les équations de ce modèle peuvent être formulées mathématiquement comme dans un modèle élasto-plastique classique. L'algorithme d'intégration de contrainte classique peut donc être appliqué. Les effets thermiques ont été examinés par l'évaluation de la pertinence de trois lois thermomécaniques avancées (Cui et al, 2000; Abuel-Naga et al, 2007; Laloui et François, 2008; 2009). Il apparaît que tous les trois modèles peuvent décrire les caractéristiques principales du comportement thermo-mécanique des argiles saturées. Cependant, chaque modèle a ses limites ou des points peu clairs du point de vue théorique. L'algorithme d'intégration de contrainte du modèle thermo-mécanique de Cui et al. (2000) au point de contrainte a également été développé spécifiquement en utilisant une méthode adaptive du pas de temps. Le temps de calcul nécessaire pour obtenir une précision donnée est ainsi largement réduit pour des chemins de chargements thermiques et mécaniques. Un modèle thermo-mécanique à Deux surfaces (modèle TEAM) a été développé en se basant sur le mécanisme plastique de Deux surfaces. Le modèle proposé a étendu le modèle de Cui et al. (2000) à une formulation de Deux surfaces considérant le couplage entre les déformations plastiques des chemins de chargements thermiques et mécaniques. La simulation des essais drainés montre que ce modèle peut décrire les caractéristiques principales thermo-mécaniques de l'argile de Boom naturelle le long de différents chemins de chargements. Le modèle TEAM a finalement été étendu à des conditions non drainées. Après la clarification du concept des contraintes effectives et la définition d'une condition de déformation volumique, le processus d'échauffement non drainé est analysé. La validité des équations thermo-hydro-mécaniques de ce modèle a été examinée en se basant sur des résultats d'essais typiques / This study is devoted to the thermo-mechanical constitutive modeling for saturated stiff clays and the development of a corresponding efficient stress integration algorithm. The mechanical behavior of natural Boom Clay in isothermal conditions was first characterized. The Modified Cam Clay model (MCC) was then applied to simulate the natural Boom Clay behavior. It has been found that the MCC gives poor-quality predictions of the natural Boom Clay behavior. Thereby, an adapted Cam Clay model (ACC-2) was developed by introducing a new yield surface and a new plastic potential as well as a Two-surface plastic mechanism. This model allows satisfactory prediction of the main features of the mechanical behavior of natural Boom Clay. Moreover, the constitutive equations of this model can be formulated mathematically as in a classic elasto-plastic model. Thus, the classic stress integration algorithm can be applied. The thermal effects were considered by assessing the performance of some advanced thermo-mechanical models (Cui et al., 2000; Abuel-Naga et al., 2007; Laloui and François, 2008; 2009). It appears that all the three models can capture the main features of the thermo-mechanical behavior of saturated clays. However, each constitutive model has its own limitations or unclear points from the theoretical point of view. The stress integration algorithm of the thermo-mechanical model proposed by Cui et al. (2000) at the stress point level was also developed using a specifically designed adaptive time-stepping scheme. The computation time required to achieve a given accuracy is largely reduced with the adaptive sub-stepping considered for both mechanical and thermal loadings. A Two-surface thermo-mechanical model (TEAM model) was developed based on the Two-surface plastic mechanism. The proposed model extends the model of Cui et al. (2000) to a Two-surface formulation, considering the plastic strain coupling between the thermal and the mechanical loading paths. The simulation of drained tests shows that this model can capture the main thermo-mechanical features of natural Boom Clay along different loading paths. The TEAM model was finally extended to undrained conditions. After setting up an appropriate effective stress principle and defining a volumetric strain condition, the undrained heating process was analyzed. The validity of the thermo-hydro-mechanical constitutive equations was examined based on the data from typical tests
62

Model Development and Simulation of the Response of Shape Memory Polymers

Ghosh, Pritha 1983- 14 March 2013 (has links)
The aim of this work is to develop and validate a continuum model for the simulation of the thermomechanical response of a shape memory polymer (SMP). Rather than integral type viscoelastic model, the approach here is based on the idea of two inter-penetrating networks, one which is permanent and the other which is transient together with rate equations for the time evolution of the transient network. We find that the activation stress for network breakage and formation of the material controls the gross features of the response of the model, and exhibits a "thermal Bauschinger effect". The model developed here is similar to a thermoviscoelastic model, and is developed with an eye towards ease of numerical solutions to boundary value problems. The primary hypothesis of this model is that the hysteresis of temperature dependent activation-stress plays a lead role in controlling its main response features. Validation of this hypothesis is carried out for the uniaxial response from the experimental data available in the literature for two different SMP samples: shape memory polyurethane and Veriflex, to show the control of the evolution of the temperature sensitive activation stress on the response. We extend the validated 1D model to a three dimensional small strain continuum SMP model and carry out a systematic parameter optimization method for the identification of the activation stress coefficients, with different weights given to different features of the response to match the parameters with experimental data. A comprehensive parametric study is carried out, that varies each of the model material and loading parameters, and observes their effect on design-relevant response characteristics of the model undergoing a thermomechanical cycle. We develop "response charts" for the response characteristics: shape fixity, shape recovery and maximum stress rise during cooling, to give the designer an idea of how the simultaneous variation of two of the most influential material parameters changes a specific response parameter. To exemplify the efficacy of the model in practical applications, a thermoviscoelastic extension of a beam theory model will be developed. This SMP beam theory will account for activation stress governed inelastic response of a SMP beam. An example of a three point bend test is simulated using the beam theory model. The numerical solution is implemented by using an operator split technique that utilizes an elastic predictor and dissipative corrector. This algorithm is validated by using a three-point bending experiment for three different material cases: elastic, plastic and thermoplastic response. Time step convergence and mesh density convergence studies are carried out for the thermoviscoelastic FEM model. We implement and study this model for a SMP beam undergoing three-point bending strain recovery, stress recovery and cyclic thermomechanical loading. Finally we develop a thermodynamically consistent finite continuum model to simulate the thermomechanical response of SMPs. The SMP is modeled as an isotropic viscoplastic material where thermal changes govern the evolution of the activation stress of the material. The response of the SMP in a thermomechanical cycle is modeled as a combination of a rubbery and a glassy element in series. Using these assumptions, we propose a specific form for the Helmholtz potential and the rate of dissipation. We use the technique of upper triangular decomposition for developing the constitutive equations of the finite strain SMP model. The resulting model is implemented in an ODE solver in MATLAB, and solved for a simple shear problem. We study the response of the SMP model for shear deformation as well as cyclic shear deformation at different initial temperatures. Finally, we implement the thermomechanical cycle under shear deformations and study the behavior of the model.
63

Modeling the mechanical behavior and deformed microstructure of irradiated BCC materials using continuum crystal plasticity

Patra, Anirban 13 January 2014 (has links)
The mechanical behavior of structural materials used in nuclear applications is significantly degraded as a result of irradiation, typically characterized by an increase in yield stress, localization of inelastic deformation along narrow dislocation channels, and considerably reduced strains to failure. Further, creep rates are accelerated under irradiation. These changes in mechanical properties can be traced back to the irradiated microstructure which shows the formation of a large number of material defects, e.g., point defect clusters, dislocation loops, and complex dislocation networks. Interaction of dislocations with the irradiation-induced defects governs the mechanical behavior of irradiated metals. However, the mechanical properties are seldom systematically correlated to the underlying irradiated microstructure. Further, the current state of modeling of deformation behavior is mostly phenomenological and typically does not incorporate the effects of microstructure or defect densities. The present research develops a continuum constitutive crystal plasticity framework to model the mechanical behavior and deformed microstructure of bcc ferritic/martensitic steels exposed to irradiation. Physically-based constitutive models for various plasticity-induced dislocation migration processes such as climb and cross-slip are developed. We have also developed models for the interaction of dislocations with the irradiation-induced defects. A rate theory based approach is used to model the evolution of point defects generated due to irradiation, and coupled to the mechanical behavior. A void nucleation and growth based damage framework is also developed to model failure initiation in these irradiated materials. The framework is used to simulate the following major features of inelastic deformation in bcc ferritic/martensitic steels: irradiation hardening, flow localization due to dislocation channel formation, failure initiation at the interfaces of these dislocation channels and grain boundaries, irradiation creep deformation, and temperature-dependent non-Schmid yield behavior. Model results are compared to available experimental data. This framework represents the state-of-the-art in constitutive modeling of the deformation behavior of irradiated materials.
64

Strength and Deformation Behavior of Municipal Solid Waste (MSW) Based on Constitutive Modeling Approach

Chouksey, Sandeep Kumar January 2013 (has links) (PDF)
The geotechnical properties of municipal solid waste (MSW) such as compressibility, shear strength and stiffness are of prime importance in design and construction of landfills. However, it is not well clear how the stress-strain and strength characteristics vary with time as the biodegradation of waste continues in the landfill. There is also a need to address the variability of MSW properties and their role in landfill design. The present thesis proposes models for the analyses of stress-strain response of MSW in undrained and drained conditions. The proposed models are based on critical state soil mechanics concept and the modified cam clay model is extended to consider the effects of creep and biodegradation. The models are examined with reference to experimental data and published results of MSW in the form of stress strain response. In addition, the experimental results and the data from published literature are also compared with predictions from hyperbolic model. The proposed models are able to capture the stress strain response of MSW in undrained and drained condition adequately. The applicability of proposed model is presented in terms of shear strength ratio, stiffness ratio and settlement for typical landfill cases. In order to examine the influence of model parameters on shear strength, stiffness ratio and settlement, multilinear regression equations are developed based on response surface method (RSM) for different coefficients of variation (COVs). The effect of variability associated with model parameters is examined using reliability analysis. For better understanding, the present thesis is divided into following seven chapters. Chapter 1 is an introductory chapter, in which the need for use of the constitutive models and its use in engineering response analysis of MSW is presented. Further, the organization of thesis is also presented. Chapter 2 presents various studies with regard to the engineering properties of MSW available in the literature. Different models and approaches proposed by various researchers for the prediction of stress-strain response, time dependent behavior and settlement analysis of the MSW are presented. The uncertainty associated with engineering properties and available methods for reliability analysis and the use of response surface method are presented. Finally, based on the literature review, the scope of the thesis and summary of chapter are presented at the end. Chapter 3 presents composition of MSW, detailed description of the sample preparation, methods adopted in the experimental program and test results of one dimensional compression and consolidated undrained tests. Based on the experimental observations, a constitutive model for municipal solid waste for undrained condition in the framework of modified cam clay model considering mechanical creep and biodegradation mechanisms is proposed. It also provides detailed description of the selection of the input parameters required for the proposed model. Further, the detailed derivation of proposed model and the discussion on evaluation of the input model parameters from triaxial and consolidation tests are presented. The model is examined with reference to the experimental data and published results. The stress strain behavior of MSW is compared with the prediction of stress strain response from hyperbolic model. The comparison of stress strain response is well captured using proposed model for all levels of strain. The major conclusions from the study are presented at the end. Chapter 4 presents experimental results of consolidated drained tests. A constitutive model for MSW for drained condition in the framework of modified cam clay model considering mechanical creep and biodegradation mechanisms is proposed. The model is examined with reference to the experimental data and data from published literature. In addition, stress strain behavior of MSW is compared with the predictions from hyperbolic model. The comparison of stress strain response is well captured using proposed model for all levels of strain. The major conclusions from the study are presented at the end. Chapter 5 presents the applicability of proposed models in terms of shear strength ratio and stiffness ratio for a typical landfill condition. Based on response surface method (RSM), multilinear response surface equations are developed for different variables ( M, λ.b.c.d.Edg ) for different percentages of strain for 10 and 20% COVs of the model parameters. The effect of variability of model parameters is presented in terms of results of reliability analysis for specified performance functions. The major conclusions from the study are presented at the end. Chapter 6 presents an approach for the settlement evaluation of MSW for a typical landfill case of 30 m high. Based on RSM, multilinear response surface equations are developed for the calculation of MSW settlement for 30 years for 10 and 20% COVs. The effect of variability of model parameters is evaluated in term of reliability index for performance function specified in terms of landfill capacity. The major conclusions from the study are presented at the end. Chapter 7 presents a brief summary and conclusions from the various studies reported in the present thesis.
65

Mehrskalige Modellierung und Finite-Elemente-Simulation magnetorheologischer Elastomere

Kalina, Karl Alexander 02 August 2021 (has links)
Die vorliegende Arbeit stellt eine mehrskalige Modellierungs-Strategie für die Beschreibung magnetorheologischer Elastomere (MRE) vor. Diese ermöglicht die Betrachtung von MRE sowohl auf der Mikroskala, wo die heterogene Mikrostruktur bestehend aus Partikeln und Matrix explizit aufgelöst ist, als auch auf der Makroskala, in welcher das MRE als homogener magnetisch aktiver Körper aufzufassen ist. Auf beiden Skalen kommt dabei eine Kontinuumsformulierung des gekoppelten magneto-mechanischen Feldproblems mit Gültigkeit für finite Deformationen zum Einsatz, wobei die Lösung des Systems partieller Differentialgleichungen mittels der Finite-Elemente-Methode erfolgt. Ausgehend von einer experimentellen Charakterisierung der Konstituenten werden Materialmodelle für die elastomere Matrix sowie Carbonyleisen- und Neodym-Eisen-Bor-Partikel formuliert und mittels dieser Daten kalibriert. Im nächsten Schritt erfolgt die Analyse des effektiven Verhaltens hart- und weichmagnetischer MRE auf Basis von numerischen Homogenisierungen verschiedener mikroskopischer Partikelverteilungen und den Materialmodellen für die Konstituenten. Um weiterhin die effiziente Simulation makroskopischer MRE-Proben und -Bauteile zu ermöglichen, ist daran anschließend die Entwicklung und Parametrisierung eines Makromodells ausgehend von mikroskopisch generierten Datensätzen beschrieben. Mit diesem für isotrope, weichmagnetische und elastische MRE gültigen Modell werden abschließend Simulationen des magnetostriktiven sowie des magnetorheologischen Effektes verschiedener Proben durchgeführt. / In this contribution, a strategy for the multiscale modeling of magnetorheological elastomers (MREs) is presented. It allows to consider these materials on the microscopic scale, where the heterogeneous microstructure consisting of an elastomer matrix and embedded magnetizable particles is explicitly resolved, as well as the macroscopic scale, where the MRE is considered to be a homogeneous magneto-active body. On both scales, a continuum formulation of the coupled magneto-mechanical boundary value problem valid for finite strains is applied. The solution of the system of partial differential equations is calculated by using the finite element method. Starting with an experimental characterization of the individual constituents, constitutive models for the elastomer matrix as well as carbonyl iron and neodymium-iron-boron particles are formulated and adjusted to experimental data. In a next step, basic effective properties of magnetically soft and hard MREs are analyzed by using a computational homogenization scheme, where different geometrical arrangements of the particles on the microscale are considered. In order to enable the efficient simulation of macroscopic MRE samples and components, the developement and parametrization of a macroscopic model based on a microscopically generated data basis is described. With this model which is applicable for isotropic, magnetically soft and elastic MREs, simulations of the magnetostrictive and magnetorheological effects of several sample geometries are performed.
66

Multi-scale modeling of damage in masonry structures / Multi-scale modeling of damage in masonry walls

Massart, Thierry,Jacques 02 December 2003 (has links)
<p align="justify">The conservation of structures of the historical heritage is an increasing concern nowadays for public authorities. The technical design phase of repair operations for these structures is of prime importance. Such operations usually require an estimation of the residual strength and of the potential structural failure modes of structures to optimize the choice of the repairing techniques.</p> <p><p align="justify">Although rules of thumb and codes are widely used, numerical simulations now start to emerge as valuable tools. Such alternative methods may be useful in this respect only if they are able to account realistically for the possibly complex failure modes of masonry in structural applications.</p><p><p align="justify">The mechanical behaviour of masonry is characterized by the properties of its constituents (bricks and mortar joints) and their stacking mode. Structural failure mechanisms are strongly connected to the mesostructure of the material, with strong localization and damage-induced anisotropy.</p><p><p align="justify">The currently available numerical tools for this material are mostly based on approaches incorporating only one scale of representation. Mesoscopic models are used in order to study structural details with an explicit representation of the constituents and of their behaviour. The range of applicability of these descriptions is however restricted by computational costs. At the other end of the spectrum, macroscopic descriptions used in structural computations rely on phenomenological constitutive laws representing the collective behaviour of the constituents. As a result, these macroscopic models are difficult to identify and sometimes lead to wrong failure mode predictions.</p><p><p align="justify">The purpose of this study is to bridge the gap between mesoscopic and macroscopic representations and to propose a computational methodology for the analysis of plane masonry walls. To overcome the drawbacks of existing approaches, a multi-scale framework is used which allows to include mesoscopic behaviour features in macroscopic descriptions, without the need for an a priori postulated macroscopic constitutive law. First, a mesoscopic constitutive description is defined for the quasi-brittle constituents of the masonry material, the failure of which mainly occurs through stiffness degradation. The mesoscopic description is therefore based on a scalar damage model. Plane stress and generalized plane state assumptions are used at the mesoscopic scale, leading to two-dimensional macroscopic continuum descriptions. Based on periodic homogenization techniques and unit cell computations, it is shown that the identified mesoscopic constitutive setting allows to reproduce the characteristic shape of (anisotropic) failure envelopes observed experimentally. The failure modes corresponding to various macroscopic loading directions are also shown to be correctly captured. The in-plane failure mechanisms are correctly represented by a plane stress description, while the generalized plane state assumption, introducing simplified three-dimensional effects, is shown to be needed to represent out-of-plane failure under biaxial compressive loading. Macroscopic damage-induced anisotropy resulting from the constituents' stacking mode in the material, which is complex to represent properly using macroscopic phenomenological constitutive equations, is here obtained in a natural fashion. The identified mesoscopic description is introduced in a scale transition procedure to infer the macroscopic response of the material. The first-order computational homogenization technique is used for this purpose to extract this response from unit cells. Damage localization eventually appears as a natural outcome of the quasi-brittle nature of the constituents. The onset of macroscopic localization is treated as a material bifurcation phenomenon and is detected from an eigenvalue analysis of the homogenized acoustic tensor obtained from the scale transition procedure together with a limit point criterion. The macroscopic localization orientations obtained with this type of detection are shown to be strongly related to the underlying mesostructural failure modes in the unit cells.</p> <p><p align="justify">A well-posed macroscopic description is preserved by embedding localization bands at the macroscopic localization onset, with a width directly deduced from the initial periodicity of the mesostructure of the material. This allows to take into account the finite size of the fracturing zone in the macroscopic description. As a result of mesoscopic damage localization in narrow zones of the order of a mortar joint, the material response computationally deduced from unit cells may exhibit a snap-back behaviour. This precludes the use of such a response in the standard strain-driven multi-scale scheme.</p> <p><p align="justify">Adaptations of the multi-scale framework required to treat the mesostructural response snap-back are proposed. This multi-scale framework is finally applied for a typical confined shear wall problem, which allows to verify its ability to represent complex structural failure modes.</p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
67

Global and Local Buckling Analysis of Stiffened and Sandwich Panels Using Mechanics of Structure Genome

Ning Liu (6411908) 10 June 2019 (has links)
Mechanics of structure genome (MSG) is a unified homogenization theory that provides constitutive modeling of three-dimensional (3D) continua, beams and plates. In present work, the author extends the MSG to study the buckling of structures such as stiffened and sandwich panels. Such structures are usually slender or flat and easily buckle under compressive loads or bending moments which may result in catastrophic failure.<div><br><div>Buckling studies of stiffened and sandwich panels are found to be scattered. Most of the existed theories employ unnecessary assumptions or only apply to certain types of structures. There are few unified approaches that are capable of studying the buckling of different kinds of structures altogether. The main improvements of current approach compared with other methods in the literature are avoiding unnecessary assumptions, the capability of predicting all possible buckling modes including the global and local buckling modes, and the potential in studying the buckling of various types of structures.<br></div><div><br></div><div>For global buckling that features small local rotations, MSG mathematically decouples the 3D geometrical nonlinear problem into a linear constitutive modeling using structure genome (SG) and a geometrical nonlinear problem defined in a macroscopic structure. As a result, the original structures are simplified as macroscopic structures such as beams, plates or continua with effective properties, and the global buckling modes are predicted on macroscopic structures. For local buckling that features finite local rotations, Green strain is introduced into the MSG theory to achieve geometrically nonlinear constitutive modeling. Newton’s method is used to solve the nonlinear equilibrium equations for fluctuating functions. To find the bifurcated fluctuating functions, the fluctuating functions are then perturbed under the Bloch-periodic boundary conditions. The bifurcation is found when the tangent stiffness associated with the perturbed fluctuating functions becomes singular. Moreover, the arc-length method is introduced to solve the nonlinear equilibrium equations for post-local-buckling predictions because of its robustness. The imperfection is included in the form of geometrical imperfection by superimposing the scaled buckling modes in linear perturbation analysis on mesh.<br></div><div><br></div><div>Extensive validation case studies are carried out to assess the accuracy of the MSG theory in global buckling analysis and post-global-buckling analysis, and assess the accuracy of the extended MSG theory in local buckling and post-local-buckling analysis. Results using MSG theory and extended MSG theory in buckling analysis are compared with direct numerical solutions such as 3D FEA results and results in literature. Parametric studies are performed to reveal the relative influence of selective geometric parameters on buckling behaviors. The extended MSG theory is also compared with representative volume element (RVE) analysis with Bloch-periodic boundary conditions using commercial finite element packages such as Abaqus to assess the efficiency and accuracy of the present approach.<br></div></div>
68

Development and explicit integration of a thermo-mechanical model for saturated clays

Hong, Peng-Yun 27 March 2013 (has links) (PDF)
This study is devoted to the thermo-mechanical constitutive modeling for saturated stiff clays and the development of a corresponding efficient stress integration algorithm. The mechanical behavior of natural Boom Clay in isothermal conditions was first characterized. The Modified Cam Clay model (MCC) was then applied to simulate the natural Boom Clay behavior. It has been found that the MCC gives poor-quality predictions of the natural Boom Clay behavior. Thereby, an adapted Cam Clay model (ACC-2) was developed by introducing a new yield surface and a new plastic potential as well as a Two-surface plastic mechanism. This model allows satisfactory prediction of the main features of the mechanical behavior of natural Boom Clay. Moreover, the constitutive equations of this model can be formulated mathematically as in a classic elasto-plastic model. Thus, the classic stress integration algorithm can be applied. The thermal effects were considered by assessing the performance of some advanced thermo-mechanical models (Cui et al., 2000; Abuel-Naga et al., 2007; Laloui and François, 2008; 2009). It appears that all the three models can capture the main features of the thermo-mechanical behavior of saturated clays. However, each constitutive model has its own limitations or unclear points from the theoretical point of view. The stress integration algorithm of the thermo-mechanical model proposed by Cui et al. (2000) at the stress point level was also developed using a specifically designed adaptive time-stepping scheme. The computation time required to achieve a given accuracy is largely reduced with the adaptive sub-stepping considered for both mechanical and thermal loadings. A Two-surface thermo-mechanical model (TEAM model) was developed based on the Two-surface plastic mechanism. The proposed model extends the model of Cui et al. (2000) to a Two-surface formulation, considering the plastic strain coupling between the thermal and the mechanical loading paths. The simulation of drained tests shows that this model can capture the main thermo-mechanical features of natural Boom Clay along different loading paths. The TEAM model was finally extended to undrained conditions. After setting up an appropriate effective stress principle and defining a volumetric strain condition, the undrained heating process was analyzed. The validity of the thermo-hydro-mechanical constitutive equations was examined based on the data from typical tests
69

Multi-physical modeling and numerical simulation of the thermo-hygro-mechanical treatment of wood

Fleischhauer, Robert, Kaliske, Michael 22 March 2024 (has links)
The contribution at hand introduces computational modeling and realistic simulation concepts for a comprehensive description of the manufacturing and application of densified wood and wooden structures made from molded densified wood.Wood, as a natural material, is characterized by e.g. a very good mechanical load-bearing capacity related to its density. Nevertheless, the ratio between its mechanical properties and its density can be optimized by densification technology for an expanded use of wood in structural engineering. The wood densification process is not only a mechanical process with large and irreversible deformations, it is also denoted by temperature- and moisture-dependent treatments of the wooden specimens. Thus, the introduced approaches to predict the material and structural characteristics of compressed and molded wood consist of an inelastic and multi-physical constitutive modeling of wood at finite deformations as well as the computation of effective structural properties of wood after the thermo-hygro-mechanical densification process. A successful implementation of the modeling concepts into the finite element method (FEM) is presented, which is verified by numerical investigations. A validation of the numerical results is carried out by use of experimental data at beech wood (Fagus Sylvatica, L.), taken from literature.

Page generated in 0.0534 seconds