• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 99
  • 47
  • 39
  • 27
  • 21
  • 19
  • 19
  • 11
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 590
  • 134
  • 123
  • 100
  • 94
  • 76
  • 69
  • 68
  • 65
  • 60
  • 60
  • 50
  • 49
  • 46
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Development of tissue-equivalent CVD-diamond radiation detectors with small interface effects

Górka, Bartosz January 2008 (has links)
Due to its close tissue-equivalence, high radiation sensitivity, dose and dose-rate linearity, diamond is a very promising detector for radiation therapy applications. The present thesis focuses on the development of a chemical vapour deposited (CVD) diamond detector with special attention on the arrangement of the electrodes and encapsulation having minimal influence on the measured signal. Several prototype detectors were designed by using CVD-diamond substrates with attached silver electrodes. Interface effects in the electrode-diamond-electrode structure are investigated using the Monte Carlo (MC) code PENELOPE. The studies cover a wide range of electrode and diamond thicknesses, electrode materials and photon beam energies. An appreciable enhancement of the absorbed dose to diamond was found for high-Z electrodes. The influence of the electrodes diminishes with decreasing atomic number difference and layer thickness, so that from this point of view thin graphite electrodes would be ideal. The effect of encapsulation, cable and electrical connections on the detector response is also addressed employing MC techniques. For Co-60, 6 and 18 MV photon beam qualities it is shown that the prototypes exhibit energy and directional dependence of about 3% and 2%, respectively. By modifying the geometry and using graphite electrodes the dependencies are reduced to 1%. Although experimental studies disclose some limitations of the prototypes (high leakage current, priming effect and slow signal stabilisation), diamonds of higher quality, suitable for dosimetry, can be produced with better-controlled CVD process. With good crystals and a well-designed encapsulation, the CVD-diamond detector could become competitive for routine dosimetry. It is then important for correct dose determination to use a collision stopping power for diamond incorporating proper mean excitation energy and density-effect corrections. A new mean excitation energy of 88 eV has been calculated.
262

SiC Homoepitaxial Growth at High Rate by Chloride-based CVD

Lin, Yuan-Chih January 2010 (has links)
SiC is an attractive material since it has remarkable properties. For several years efforts have been put primarily in electronic applications. High power and high frequency devices can be fabricated on SiC due to its wide band gap, high breakdown field and high thermal conductivity. SiC devices can be used in harsh environment since its operation temperature is significantly high (about 1200 ). SiC bulk growth has been improved by seeded physical vapour transport (PVT) during last decades. However, the quality and doping concentration of SiC bulk are not good enough to be used as an active layer for devices. SiC epilayer growth by chemical vapour deposition (CVD) was established in the last three decades. Only about 5 µm/h growth rate is achieved by CVD with a standard process. Long deposition time is required to grow ≥100µm thick epilayer for high voltage devices. The main problem in standard CVD is the formation of silicon (Si) droplets due to supersaturation of Si-species on the growth surface or in the gas-phase, which is detrimental for devices performance. To solve the problem of Si-droplets, chloride-based CVD was introduced. Chlorinated species can dissolve the silicon aggregates through the formation of strong bonds to silicon species compared to Si-Si bonds. Typical chlorinated precursors are hydrogen chloride (HCl) and methyltrichlorosilane (MTS). In this thesis study, HCl was mainly used as chlorinated precursors. Distinct chlorinated precursors result in different chemical reactions which affect the epilayer growth appreciably. The Cl/Si ratio, which is the ratio of the amount of chlorinated precursors to silicon precursors, is a very critical growth parameter for morphology, growth rate and background doping concentration. The C/Si ratio and Si/H2 ratio also affect the epilayer growth appreciably. Besides, growth temperature, growth pressure and temperature ramp up condition are other important growth parameters. In the CVD reaction chamber, the temperature profile and gas species distribution are not uniform along the whole susceptor length, which leads to different thickness of epilayer, morphology and doping concentration at different area of the reaction chamber. The polarity and off-angle of substrates can bring about complete different grown epilayers. Epitaxial defects are mainly replicated from the substrate. Therefore, the quality of substrates is very important as well. Deep energy levels can be introduced by adding transition metal such as vanadium (V), chromium (Cr) or tungsten (W). There are some limits which are needed to be overcome for a complete development of SiC. 4” SiC wafers are commercially available on the market, larger diameter would be very useful for the industrial development of SiC. High growth rate and good quality with controlled uniformity are desired for electronic applications. In this thesis, the influences of growth parameters such as C/Si and Cl/Si ratios, comparison between different precursors, growth condition in different areas of reaction chamber and effects of substrate polarity are discussed. Intentional incorporation of tungsten atoms is investigated by deep-level transient spectroscopy measurement and thermodynamic analysis.
263

Experimental Study of the Microstructural Evolution of Chemical Vapor Deposited (CVD) Nickel upon Annealing

Chichi, Chen 23 August 2011 (has links)
The effect of annealing conditions on the microstructure evolution of CVD nickel was investigated systematically in the present study by differential scanning calorimetry, optical microscopy and transmission electron microscopy (TEM), upon both ex-situ and in-situ annealing. TEM observation revealed the as-deposited CVD nickel possessed a bi-modal grain structure, with large columnar grains embedded in nanocrystalline matrix. Ultrafine and nano growth twins were present as well as multiply twinned grains with five-fold symmetry. Microstructure observation upon annealing showed that grain growth did not occur until annealing at 400ºC. Detwinning was observed at 400ºC and higher temperatures. The ultrafine and nano twins tended to transform into dislocation cell structures and this phenomenon was driven by the excess free energy associated with the high density of grown-in twin boundaries. The five-fold twinned grains were found to be thermally stable up to 600ºC. The hardness was observed to decrease with increasing annealing temperature.
264

Experimental Study of the Microstructural Evolution of Chemical Vapor Deposited (CVD) Nickel upon Annealing

Chichi, Chen 23 August 2011 (has links)
The effect of annealing conditions on the microstructure evolution of CVD nickel was investigated systematically in the present study by differential scanning calorimetry, optical microscopy and transmission electron microscopy (TEM), upon both ex-situ and in-situ annealing. TEM observation revealed the as-deposited CVD nickel possessed a bi-modal grain structure, with large columnar grains embedded in nanocrystalline matrix. Ultrafine and nano growth twins were present as well as multiply twinned grains with five-fold symmetry. Microstructure observation upon annealing showed that grain growth did not occur until annealing at 400ºC. Detwinning was observed at 400ºC and higher temperatures. The ultrafine and nano twins tended to transform into dislocation cell structures and this phenomenon was driven by the excess free energy associated with the high density of grown-in twin boundaries. The five-fold twinned grains were found to be thermally stable up to 600ºC. The hardness was observed to decrease with increasing annealing temperature.
265

De la croissance catalytique des nanotubes de carbone

Jourdain, Vincent 12 December 2012 (has links) (PDF)
Ces travaux portent sur la croissance catalytique des nanotubes de carbone par la méthode dite de Catalytic Chemical Vapor Deposition. La première partie est consacrée à une revue de la compréhension actuelle de ce processus de croissance dans la littérature en particulier concernant les connaissances antérieures issues d'autres domaines de recherche, la relation synthèse-structure et les questions encore ouvertes. La deuxième partie est consacrée aux travaux du candidat pour répondre à ces questions et utilisant essentiellement la technique de spectroscopie Raman pour des mesures in situ et ex situ. Quatre aspects sont étudiés : l'activation des particules catalytiques, la densité de défauts des nanotubes, les cinétiques de croissance / désactivation et la distribution en diamètre des nanotubes.
266

Quantum chemical studies of the chloride-based CVD process for Silicon Carbide

Kalered, Emil January 2012 (has links)
In this report the interaction between SiH2 molecules and a SiC-4H (0001) surface and SiCl2 molecules and a SiC-4H (0001) surface is investigated. This is done using a cluster model to represent the surface. First the clusters are investigated by calculating some properties to compare with experimental data to motivate the use of the cluster model. The band gap calculated by extrapolation for an infinitely large cluster is 3.75 eV which is fairly close to the experimental value of 3.2 eV. Adsorption studies are performed and the main conclusion is that the SiH2 molecule adsorbs more strongly on the surface then the SiCl2 molecule, adsorption energies are calculated to approximately 200 kJ mol-1 and 100 kJ mol-1 respectively. At the end a few migration studies are performed with the conclusion that SiCl2 more easily can diffuse on the surface compared to the SiH2 molecule. The respective activation energies for migration on the surface are 4 kJ mol-1 for SiCl2 and 87 kJ mol-1 for SiH2.
267

SiC Growth by Laser CVD and Process Analysis

Mi, Jian 07 April 2006 (has links)
The goal of this research is to investigate how to deposit SiC material from methyltrichlorosilane (MTS) and H2 using the LCVD technique. Two geometries were targeted, fiber and line. In order to eliminate the volcano effect for LCVD-SiC deposition, a thermodynamics model was developed to check the feasibility and determine the deposition temperature ranges that will not cause the volcano effect, theoretically. With the aid of the thermodynamic calculations and further experimental explorations, the processing conditions for SiC fibers and lines without volcano effect were determined. The experimental relationships between the volcano effect and the deposition temperatures were achieved. As for the SiC lines, the deposition conditions for eliminating volcano effect were determined with the help of surface response experiment and the experience of SiC fiber depositions. The LCVD process of SiC deposition was characterized by performing a kinetic study of SiC deposition. The deposits were characterized by the means of polishing, chemical etching, and SEM technique. A coupled thermal and structural model was created to calculate the thermal residual stress present in the deposits during the deposition process and during the cooling process. Laser heating of LCVD system was studied by developing another model. The transient temperature distribution within the fiber and substrate was obtained. The theoretical relationships between the laser power and the fiber heights for maintaining constant deposition temperatures were achieved.
268

Growth mechanism characteristics of nitrogen doped N-type microwave CVD diamond thin films with nitrogen and ammonia

Lin, Yang-Juin 28 July 2011 (has links)
The n-type diamond has been shown to be very difficultly synthesized by CVD method. Nitrogen as a donor impurity shows a similar atom size of carbon for diamond lattice. However, nitrogen doped diamond reveals deep level and large carrier activation energy with much defects in diamond. The application of n-type diamond has less reported and the characteristic of nitrogen doped diamond seems varied due to different fabrication process. Our previous study of nitrogen doped diamond using mixture of N2 and argon gas synthesized by microwave CVD indicated that nitrogen atoms were precipitated in the grain boundaries of diamond crystallites. In this paper, it compared the synthesis of nitrogen doped diamond using the mixed gas of nitrogen/CH4/Ar and ammonia/CH4/Ar gases by microwave CVD method for different temperature, gas flow rate, pressure, and microwave power. The conductivities, carrier concentrations and mobility of the n-type doped diamond have been analyzed and discussed. The Hall measurement shows that the mixture of gas with Ar reveals different growth mechanism and carrier transportation properties in diamond. Nitrogen atoms of N2 were located in the grain boundaries and interfaces among diamond crystallites with the sp2 structure. Nitrogen atoms of NH3 are doped into the diamond crystallites.
269

Chemical Vapor Deposition Of Boron Carbide

Karaman, Mustafa 01 September 2007 (has links) (PDF)
Boron carbide was produced on tungsten substrate in a dual impinging-jet CVD reactor from a gas mixture of BCl3, CH4, and H2. The experimental setup was designed to minimise the effect of mass transfer on reaction kinetics, which, together with the on-line analysis of the reactor effluent by FTIR, allowed a detailed kinetic investigation possible. The phase and morphology studies of the products were made by XPS, XRD,micro hardness and SEM methods. XPS analysis showed the existence of chemical states attributed to the boron carbide phase, together with the existence of oxy-boron carbide species. SEM pictures revealed the formation of 5-fold icosahedral boron carbide crystals up to 30 micron sizes for the samples produced at 1300oC. Microhardness tests showed change of boron carbide hardness with the temperature of tungsten substrate. The hardness values (Vickers Hardness) observed were between 3850 kg/mm2 and 4750 kg/mm2 corresponding to substrate temperatures of 1100 and 1300 C, respectively. The FTIR analysis of the reaction products proved the formation of reaction intermediate BHCl2, which is proposed to occur mainly in the gaseous boundary layer next to the substrate surface. The experimental parameters are the temperature of the substrate, and the molar fractions of methane and borontrichloride at the reactor inlet. The effects of those parameters on the reaction rates, conversions and selectivities were analysed and such analyses were used in mechanism determination studies. An Arrhenius type of a rate expression was obtained for rate of formation of boron carbide with an energy of activation 56.1 kjoule/mol and the exponents of methane and boron trichloride in the reaction rate expression were 0.64 and 0.34, respectively, implying complexity of reaction. In all of the experiments conducted, the rate of formation of boron carbide was less than that of dichloroborane. Among a large number of reaction mechanisms proposed only the ones considering the molecular adsorption of boron trichloride on the substrate surface and formation of dichloroborane in the gaseous phase gave reasonable fits to the experimental data. Multiple non-linear regression analysis was carried out to predict the deposition rate of boron carbide as well as formation rate of dichloroborane simultaneously.
270

Elaboration et analyses structurales et chimiques de nanotubes hétéroatomiques de type C-N et C-B-N.

Enouz-Védrenne, Shaïma 13 April 2007 (has links) (PDF)
Il existe actuellement deux structures nanotubulaires largement étudiées : les nanotubes de carbone (CNTs) possédant un gap de l'ordre de 1 eV et ceux de nitrure de bore (BN-NTs) dont le gap est compris entre 5 et 6 eV. Parvenir à doper ces nanotubes par substitution d'éléments chimiques pouvant introduire des états donneurs ou accepteurs est supposé être une approche prometteuse pour moduler les propriétés électroniques et optiques de ces nanostructures. Les objectifs de cette thèse ont été doubles. D'une part, il s'est agi de développer des procédés de synthèse modulables pour pouvoir produire différents types de tubes hétéroatomiques. La technique CVD assistée par aérosol et la technique de vaporisation laser ont été utilisées à cette fin. D'autre part, une analyse fine à l'échelle macroscopique et sub-nanométrique des échantillons a été réalisée principalement par microscopie électronique en transmission (HRTEM) et spectroscopie de pertes d'énergies des électrons résolue spatialement (SR-EELS).<br />Il a ainsi été mis en évidence dans ce manuscrit la possibilité de réaliser des nanotubes de type CNx et CBxNy mono- et multi-feuillets. Par ailleurs, une forte tendance à la ségrégation en domaines de type C et BN a été observée avec un localisation préférentielle et une taille des domaine spécifique, fonction de la technique de synthèse utilisée.

Page generated in 0.0371 seconds