• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 54
  • 43
  • 22
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 350
  • 350
  • 99
  • 86
  • 72
  • 63
  • 55
  • 52
  • 51
  • 50
  • 47
  • 41
  • 37
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Voltametrické stanovení chloramfenikolu a ofloxacinu na borem dopované diamantové filmové elektrodě / Voltammetric Determination of Chloramphenicol and Ofloxacin at Boron Doped Diamond Film Electrodes

Ječmínková, Jana January 2011 (has links)
Voltammetric methods for the determination amphenicol antibiotic chloramphenicol (CAP) and quinolone antibiotic Ofloxacin (OFL) were developed. TTechniques differential pulse voltammetry (DPV) and DC voltammetry (DCV) for determination of both substances at boron doped diamond film electrode (BDDFE) were used. The effect of pH of Britton-Robinson buffer was tested and the stability of the signal with repeated measurements was monitored. Optimal pH 6 was used for determining of CAP by both, DPV and DCV techniques. Media of pH 4 for determining of OFL by DPV and DCV was optimal. Under these conditions linear dependences in the calibration concentration region 1.10 -6 - 1.10-4 mol.l -1 were obtained. The limit of determination for the method for CAP by DPV at 3.10 mol.l , by -6 -1 DCV at 3.10 mol.l and for -6 -1 OFL by DPV at 1.10 mol.l -6 -1 and by DCV at 4.10 mol.l -7 -1 was found. The developed methods were used for the determination of CAP in the drug samples Spersadex comp. and OFL determination in drug samples Zanocin 200. Method for solid phase extraction of OFL from samples of urine with voltammetric detection was developed with limit of determination at 7.10 mol.l . -6 -1
162

<i>In-situ</i> scanning tunneling microscopy studies of the SEI formation on graphite anodes in propylene carbonate

Dehiwala Liyanage, Chamathka H. January 2019 (has links)
No description available.
163

Electrochemical Studies of Nickel/Sulfuric Acid Oscillating Systems and the Preparation and Testing of Copper Coupled Microelectrode Array Sensors

Clark, David Quentin 12 August 2016 (has links)
The electrochemical behavior of nickel (Ni) in different concentrations of sulfuric acid (H2SO4) was studied via cyclic voltammetry (CV) over a range of potentials (0.0 V– 3.0 V) at room temperature. The presented work displays novel experiments where external forcing by a platinum (Pt) electrode changed the proton concentration at a Ni electrode surface in order to control the frequency and magnitude of periodic oscillations produced. When studying unique phenomena such as the Ni phenomena in this thesis, efficient, durable, and inexpensive technology is always beneficial. A coupled microelectrode array sensor or CMAS which has been used for over four decades to study pitting corrosion, crevice corrosion, intergranular corrosion, galvanic corrosion, and other heterogeneous electrochemical processes were fabricated in a novel, systematic, inexpensive, and time efficient process. The presented work shows how to make the CMAS and proved that they functioned properly.
164

Electrochemical Behavior of the High Entropy Oxide (Mg,Co,Ni,Zn)1-xLixO (x=0,35) / Elektrokemiska Beteenden hos högentropioxiden (Mg,Co,Ni,Zn)1-xLixO (x=0,35)

Sandström Kinnane, Rasmus January 2022 (has links)
Today's society is currently developing lithium-ion batteries to eventually replace the use of fossil fuels. High entropy oxides is a new type of material to use as an anode in the lithium-ion battery. These high entropy oxides may consist of a few different transition metals including lithium and oxygen. In this report was (MgCoNiZn)1-xLixO synthesized with a method called Pechini with a molar fraction of x=0.35. This study compares the results from a reference study that has shown the potential of the electrochemical characteristics of (MgCoNiZn)1-xLixO for application as anode in a lithium-ion battery.  The synthesis starts with a heating step to remove all the organics in the composition. The powder consists of several structures and, therefore goes through a calcination step to dissolve all of the intermediate phases into the rock-salt structure. The structure of the powder had a lattice constant of 4,138Å. The powder was made into a slurry containing Carbon black, PVDF and NMP to later get coated by a Dr. Blade. After drying the coating the cell was then assembled with lithium as metal cathode and 1M LiPF6 in 1:1 EC/DMC as electrolyte. After the cell was assembled it, went through electrochemical properties test using a potentiostat and the cell being inside a in a climate chamber at 25°C.  7 cycles were done to plot a cyclic voltammetry graph as well as a discharge-charge test was performed. The cyclic voltammetry and discharge-charge test was run with a voltage range of 0,053 V. The discharge-charge test was run at a current density of 100 mA/g and a constant current of 42,68 mA. / Dagens samhälle genomgår en stor utveckling av litium-jon batterier för att kunna ersätta användningen av fossila bränslen. Höga entropi oxider är ny typ av material som används som anod material för litiumjonbatterier. Dessa höga entropi oxider kan bestå av en rad olika övergångsmetaller inklusive litium och syre i sammansättningen. I den här rapporten var (MgCoNiZn)1-xLixO syntetiserad med en metod som heter Pechini med ett molbråk på x=0,35. En studie har visat potentialen i dem elektrokemiska beetenden av (MgCoNiZn)1-xLixO till applicering som en anode i ett litiumjon batteri.  Syntetiseringen började med ett uppvärmningsteg för att bränna bort alla organiska föreningar. Resulterade pulvret bestod av olika strukturer, och till ett kalcinerings steg för att lösa upp mellanfaserna till NaCL-struktur. Strukturen på pulvret hade en gitter constant på 4,138 Å. Pulvret gjordes till en slurry som innehåller amorft kol, PVDF och NMP för att sedan belägga elektroden med en Dr.Blade. Efter beläggningen har fått torka monterades cellen med litium som katod och 1M LiPF6 in 1:1 EC/DMC som elektrolyt. Tester utfördes på cellen med hjälp av en potentiostat medans cellen var förvaren i en klimatkammare i 25°C.  7 stycken cykler kördes för att plotta en cyklisk voltametri graf samt en urladdning-laddning prov utfördes. Cykliska voltametrin och urladdning-laddnings prov utfördes med ett spänningsintervall på 0,05-3,0V. Urladdning-laddnings provet hade en strömtäthet på 100 mA/g och en konstant ström på 42,68 mA.
165

The Electrochemical Behavior Of Molybdenum And Tungsten Tri-Nuclear Metal Clusters With Ethanoate Ligands

Kennedy, Edward Nelson 21 August 2017 (has links)
No description available.
166

Studies of Platinum Polyynyl Complexes: Elaboration of Novel "Click" Cycloadducts and Fluorous and Polygon Based Platinum Polyyndiyl Systems

Clough, Melissa Catherine 1985- 14 March 2013 (has links)
The major directions of this dissertation involve (1) the syntheses and characterization of molecular polygons incorporating sp1hybridized carbon linkers and L2Pt corners (L2 = cis-1,3-diphosphine), (2) the development of protected carbon chain complexes featuring fluorous phosphine ligands and (3) click reactions of metal terminal polyynyl complexes and further metallations of the resulting triazole rings. A brief overview is provided in Chapter I. Chapter II details the syntheses of molecular squares containing bidendate diphosphine ligands of the formula R2C(CH2PPh2)2 where R = Me, Et, n-Bu, n-Dec, Bn, and p-tolCH2 (general designation dppp*), in which the R2 groups are intended to circumvent the solubility issues encountered by others. Their syntheses involve double substitutions of the dimesylate compounds R2C(CH2OMs)2 using KPPh2. Building blocks of the formulae (dppp*)PtCl2 and (dppp*)Pt((C≡C)2H)2 are synthesized and characterized, including one crystal structure of the latter. The target complexes are accessed by reactions of (dppp*)PtCl2 with (dppp*)Pt((C≡C)2H)2 under Sonogashira type conditions. Six new squares of the formula [(R2C(CH2PPh2)2)Pt(C≡C)2]4 are characterized including two crystal structures. Further topics include approaches to higher homologues and cyclocarbon synthesis. Chapter III focuses on carbon chain complexes bearing fluorous phosphine ligands of the formula P((CH2)mRfn)3 (Rfn = (CF2)n-1CF3; m/n = 2/8, 3/8, and 3/10). Precursors of the formula trans-(C6F5)((Rfn(CH2)m)3P)2PtCl are synthesized and characterized, including one crystal structure, which reveals phase separation of the fluorous and non-fluorous domains. Reactions with butadiyne give trans-(C6F5)((Rfn(CH2)m)3P)2Pt(C≡C)2H. Oxidative homocouplings afford the target complexes trans,trans-(C6F5)((Rfn(CH2)m)3P)2Pt(C≡C)4(C6F5)(P((CH2)mRfn)3)2Pt. Cyclic voltammetry indicates irreversible oxidations of the title compounds, in contrast to partially reversible oxidations of non-fluorous analogues. Chapter IV focuses on multimetallic complexes achieved by click reactions in metal coordination spheres. The copper catalyzed click reaction between trans-(C6F5)(p-tol3P)2Pt(C≡C)2H (1) and (η5-C5H4N3)Re(CO)3 affords the bimetallic 1,2,3-triazole trans-C6F5)(p1tol3P)2PtC≡CC=CHN((η51C5H4)Re(CO)3)N=N. Further reactions with Re(CO)5OTf and Re(CO)5Br give trimetallated adducts, which represent the first species of this type. An alternative route to a trimetallic complex involves the twofold cycloaddition of the diazide (η5-C5H4N3)2Fe and 1, giving (η5-C5H4NN=N-C(trans-(C≡C)Pt(Pp-tol3)2(C6F5)=CH)2Fe. The crystal structures of the di and trimetallic complexes are compared, but attempts to achieve a fourth metallation involving the =CH groups are unsuccessful. However, when the triazolium salt [trans-(C6F5)(p-tol3P)2PtC≡CC=CHN(CH2C6H5)N=N(Me)]+ I– is treated with Ag2O and [Rh(COD)Cl]2, a =CRh adduct is obtained. The success of =CH metallation is correlated to the 1H NMR chemical shift, indicative of an electronic effect.
167

Electrochemical analysis of water and suds by impedance spectroscopy and cyclic voltammetry

Gruden, Roman, Buchholz, Andreas, Kanoun, Olfa 17 July 2014 (has links) (PDF)
Optimum detergent dosage during a washing process depends on water quality, degree of pollution and quantity of laundry. Particularly, water quality is an important factor. Other parameters like carbonate- or non-carbonate hardness and calcium / magnesium (Ca / Mg) ratio in addition to total hardness of water have an impact on the amount of detergent. This work discusses the possibilities realizing a detergent sensor that measures important parameters for the washing process and assess the ideal necessary amount of detergent during the washing process. The approach is to combine impedance spectroscopy with cyclic voltammetry in order to determine both water quality and concentration of detergent in the suds which build up the basis for an optimum detergent dosage. The results of cyclic voltammetry show that it is possible to identify the Ca / Mg ratio and the carbonate hardness separately, which is necessary for the optimization of the washing process. Impedance measurements identify total hardness and detergent concentrations.
168

Bioelectrochemistry by fluorescent cyclic voltammetry

Mizzon, Giulia January 2012 (has links)
Understanding the factors influencing the ET characteristics of redox proteins confined at an electrochemical interface is of fundamental importance from both pure (fundamental science) and applied (biosensory) perspectives. This thesis reports on progress made in the emerging field of coupled electrochemical characterization and optical imaging in moving the analysis of redox-active films to molecular scales. More specifically the combination of cyclic voltammetry and wide-field Total Internal Reflection (TIRF) microscopy, here named ‘Fluorescent Cyclic Voltammetry’ (FCV), was applied to monitoring the response of surface-confined redox active proteins at submonolayer concentrations. The combined submicrometre spatial resolution and photon capture efficiency of an inverted TIRF configuration enabled the redox reactions of localized populations of proteins to be directly imaged at scales down to a few hundreds of molecules. This represents a 6-9 orders of magnitude enhancement in sensitivity with respect to classical current signals observed in bioelectrochemical analysis. Importantly, measurements of redox potentials at this scale could be achieved from both natural and artificially designed bioelectrochemical fluorescent switches and shed fundamental light on the thermodynamic and kinetic dispersion within a population of surface confined metalloproteins. The first three chapters of this thesis provide an overview of the relevant literature and a theoretical background to both the rapidly expanding fields of electroactive monolayers bioelectrochemistry and TIRF imaging. The initial design and construction of a robust electrochemically and optically addressable fluorescent switch, crucial to the applicability of FCV is reported in chapter 5. The generation of optically transparent, and chemically modifiable electrode surfaces suitable for FCV are also described. Chapter 6 describes the response of the surface confined azurin-based switch. Analysis of the spatially-resolved redox reaction of zeptomole samples in various conditions enables the mapping of thermodynamic dispersion across the sampled areas. In chapter 7 the newly developed FCV detection method was extended to investigate more complex bioelectrochemical systems containing multiple electron transferring redox centres and responding optically at different wavelengths. This approach provides a platform for spectral resolution of different electrochemical processes on the same sample. Finally in chapter 8 an electrochemical procedure is proposed for investigating the kinetic response of redox proteins using a fundamentally new methodology based on interfacial capacitance. In using variations in the surface chemistry to tune the rate of electron transfer, the approach was shown to be a robust and facile means of characterising redox active films in considerably more detail than possible through standard electrochemical methodologies. Ultimately, it can be applied to probe dispersion within protein populations and represents a powerful means of analysing molecular films more generally.
169

Electrochemical properties of redox mediators at carbon electrodes

Kozub, Barbara Renata January 2011 (has links)
Chapter1 gives an overview of the basic principles of electrochemistry. A rigorous electrochemical study on the solution phase and solid phase cobalt phthalocyanine (CoPC) is presented in chapter2. The formof CoPC on carbon electrodes was characterized by scanning electron microscope (SEM). The use of CoPC modified edge plane pyrolytic graphite (CoPC-EPPG) for sensing nitrite (NO₂⁻) was also investigated. It was found that the claimed mediator CoPC has no influence on the process. A bare glassy carbon (GC) electrode was successfully applied for the quantitative determination of nitrite as a simple alternative to the modified electrodes reported in the literature (chapter3). Chapter4 compares the voltammetric responses of an edge plane pyrolytic graphite electrode covalently modifed with 2-anthraquinonyl groups (EPPG-AQ2) and solution phase anthraquinone monosulphonate (AQMS) in the presence of a limited concentration of protons. The solution phase and surface bound species show analogous responses resulting in split waves. Digisim™ simulation of the AQMS voltammetry have shown that the pH adjacent to the electrode may be altered by up to 5-6 pH units in low buffered solutions; this is caused by the consumption of protons during the electrochemical reaction. Chapters5 and 6 compare the electrochemical properties of 2-anthraquinonyl groups covalently attached to an edge plane pyrolytic graphite (EPPG) and to a gold electrode. In both cases simulations using newly developedMarcus-Hush-Chidsey theory for a 2e⁻ process assuming a uniform surface did not achieve a good agreement between theory and experiment. Subsequently two models of surface inhomogeneity were investigated: a distribution of formal potentials, E<sup>Ө</sup>, and a distribution of electron tunneling distances, r₀. For both EPPG-AQ2 and Au-AQ2 modified electrodes the simulation involving E<sup>Ө</sup> distribution turned out to be the most adequate. This is the first time that Marcus-Hush-Chidsey theory has been applied to a 2e⁻ system. Chapter7 briefly summarizes the obtained results.
170

Možnosti elektrochemické analýzy s využitím soustavy více elektrod s nespecifickou odezvou / Possibilities of Electrochemical Analysis Using a System of Electrodes With Non-Specific Response

Ederer, Jakub January 2014 (has links)
The master thesis present the possibilities of processing of electrochemical data from a group of four electrodes with non-selective response (simple sensor array) for electrochemical analysis with potential application of the results achieved in the construction of the sensor field type "electronic tongue". This simple system was applied to the sample simulating the food product. Electrochemical data were processed through mathematical operations such as Gaussian approximation, deconvolution or using basic mathematical operations.

Page generated in 0.0513 seconds