• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 366
  • 139
  • 47
  • 42
  • 34
  • 10
  • 9
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 844
  • 117
  • 106
  • 105
  • 61
  • 60
  • 59
  • 56
  • 50
  • 45
  • 45
  • 44
  • 44
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Linearity Enhancement of High Power GaN HEMT Amplifier Circuits

Saini, Kanika 04 October 2019 (has links)
Gallium Nitride (GaN) technology is capable of very high power levels but suffers from high non-linearity. With the advent of 5G technologies, high linearity is in greater demand due to complex modulation schemes and crowded RF (Radio Frequency) spectrum. Because of the non-linearity issue, GaN power amplifiers have to be operated at back-off input power levels. Operating at back-off reduces the efficiency of the power amplifier along-with the output power. This research presents a technique to linearize GaN amplifiers. The linearity can be improved by splitting a large device into multiple smaller devices and biasing them individually. This leads to the cancellation of the IMD3 (Third-order Intermodulation Distortion) components at the output of the FETs and hence higher linearity performance. This technique has been demonstrated in Silicon technology but has not been previously implemented in GaN. This research work presents for the first time the implementation of this technique in GaN Technology. By the application of this technique, improvement in IMD3 of 4 dBc has been shown for a 0.8-1.0 GHz PA (Power Amplifier), and 9.5 dBm in OIP3 (Third-order Intercept Point) for an S-Band GaN LNA, with linearity FOM (IP3/DC power) reaching up to 20. Large-signal simulation and analysis have been done to demonstrate linearity improvement for two parallel and four parallel FETs. A simulation methodology has been discussed in detail using commercial CAD software. A power sampler element is used to compute the IMD3 currents coming out of various FETs due to various bias currents. Simulation results show by biasing one device in Class AB and others in deep Class AB, IMD3 components of parallel FETs can be made out of phase of each other, leading to cancellation and improvement in linearity. Improvement up to 20 dBc in IMD3 has been reported through large-signal simulation when four parallel FETs with optimum bias were used. This technique has also been demonstrated in simulation for an X-Band MMIC PA from 8-10 GHz in GaN technology. Improvements up to 25-30 dBc were shown using the technique of biasing one device with Class AB and other with deep class AB/class B. The proposed amplifier achieves broadband linearization over the entire frequency compared to state-of-the-art PA's. The linearization technique demonstrated is simple, straight forward, and low cost to implement. No additional circuitry is needed. This technique finds its application in high dynamic range RF amplifier circuits for communications and sensing applications. / Doctor of Philosophy / Power amplifiers (PAs) and Low Noise Amplifiers (LNAs) form the front end of the Radio Frequency (RF) transceiver systems. With the advent of complex modulation schemes, it is becoming imperative to improve their linearity. Through this dissertation, we propose a technique for improving the linearity of amplifier circuits used for communication systems. Meanwhile, Gallium Nitride (GaN) is becoming a technology of choice for high-power amplifier circuits due to its higher power handling capability and higher breakdown voltage compared with Gallium Arsenide (GaAs), Silicon Germanium (SiGe) and Complementary Metal-Oxide-Semiconductor (CMOS) technologies. A circuit design technique of using multiple parallel GaN FETs is presented. In this technique, the multiple parallel FETs have independently controllable gate voltages. Compared to a large single FET, using multiple FETs and biasing them individually helps to improve the linearity through the cancellation of nonlinear distortion components. Experimental results show the highest linearity improvement compared with the other state-of-the-art linearization schemes. The technique demonstrated is the first time implementation in GaN technology. The technique is a simple and cost-effective solution for improving the linearity of the amplifier circuits. Applications include base station amplifiers, mobile handsets, radars, satellite communication, etc.
442

Audibility of Phase Distortion in Two Way Loudspeakers in Ecological Environments

Gerhardsson, Albin January 2024 (has links)
Loudspeakers are used professionally and for leisure as a device which presents audio information to a listener. Loudspeakers “color” this information in different ways because of different properties, which they inherit from the decisions made in the design process. This study investigated the audibility of phase distortion in loudspeaker systems in ecologically valid environments using different types of program material and levels of group-delay. 13 subjects participated in a listening test, each performing 48 trials across various conditions. Results revealed significant differences in the ability to differentiate between reference and impaired signals based on program material and impairment level. Notably, participants demonstrated better discrimination for simple transient sounds compared to a mixed music recording. These results suggest that phase distortion may be less audible in mixed music reproduction than in click-like sounds. However, findings indicate a lower audible threshold for phase distortion compared to existing literature for click-like stimuli. Overall, while phase distortion may not always be audible, consideration for it can be relevant for achieving high audio quality in loudspeaker systems. These findings hopefully contribute to the understanding of phase distortion's perceptual effects and its implications for audio engineering and consumer electronics design.
443

Inheritance and expression of Cry3Aa and PVY-O coat protein transgenes in diploid and tetraploid potato

Skoneczka, Jeffrey Allen 18 August 2004 (has links)
The potential benefits of plant genetic engineering for disease and pest resistance have been widely acknowledged in many studies, and although genetically modified crops are still encountering public wariness, these benefits warrant continued exploration. Because of its intrinsic economic benefits, the development of true potato seed (TPS) cropping systems has been instituted in many regions of the world. The incorporation of transgenic resistance could further the economic gain of farmers who are seeking ways to sustain their livelihood in the most efficient way possible. It is, however, largely unresearched how sexual hybridization of a transgenic crop would affect the behavior of a transgene in the resultant progeny. In the initial part of this study, transgenic lines were developed with a Cry3Aa transgene. These plants were then used in 4x-4x reciprocal crosses and 4x-2x hybridization schemes to determine the stability of the transgene after sexual hybridization. There was no observed parent of origin effect on transgene expression; however, a highly significant, non-mendelian inheritance of the Cry3Aa transgene was seen in the maternally inherited transgene of one set of progeny from a reciprocal cross. Additional transgenic lines of potato were developed with a PVY-O coat protein transgene. These plants were challenged with PVY-O and monitored for symptoms visually and for virus serologically. One transgenic line exhibited complete resistance to PVY-O while two others showed a delay in symptom occurrence. Further examination of the expression levels of the PVY-O coat protein transgene will be necessary to determine the type and usefulness of the observed resistance. / Master of Science
444

Diode Predistortion Linearization for Power Amplifier RFICs in Digital Radios

Haskins, Christopher Burke 26 April 2000 (has links)
The recent trend in modern information technology has been towards the increased use of portable and handheld devices such as cellular telephones, personal digital assistants (PDAs), and wireless networks. This trend presents the need for compact and power efficient radio systems. Typically, the most power inefficient device in a radio system is the power amplifier (PA). PA inefficiency requires increased battery reserves to supply the necessary DC bias current, resulting in larger devices. Alternatively, the length of time between battery charges is reduced for a given battery size, reducing mobility. In addition, communications channels are becoming increasingly crowded, which presents the need for improved bandwidth efficiency. In order to make more efficient use of the frequency spectrum allocated for a particular system, there is a push towards complex higher order digital modulation schemes in modern radio systems, resulting in stricter linearity requirements on the system. Since power efficient amplifiers are typically nonlinear, this poses a major problem in realizing a bandwidth and power efficient radio system. However, by employing various linearization techniques, the linearity of a high efficiency PA may be improved. The work presented in this thesis focuses on diode predistortion linearization, particularly for PA RFICs in digital radios. Background discussion on common linearization techniques available to the PA designer is presented. In addition, a discussion of traditional and modern methods of nonlinearity characterization is presented, illustrating the nonlinear PA effects on a modulated signal. This includes the use of two-tone analysis and the more modern envelope analysis. The operation of diode predistortion linearizers is discussed in detail, along with diode optimization procedures for PA linearization with minimum impact on return loss and gain. This diode optimization is effective in improving the ability to integrate the predistorter into a single, linearized PA RFIC chip. MESFET and HBT based diode linearizers are studied for use with corresponding MESFET and HBT based PAs in the 2.68 GHz and 1.95 GHz frequency bands, respectively. Results show an improvement in adjacent channel power ratio (ACPR) due to the linearizer in both MESFET and HBT cases. A fully integrated 1.95 GHz linearizer and PA RFIC in HBT technology is also presented. Design considerations, simulations, and layouts for this design are presented. Finally, several recommendations are made for continued research in this area. / Master of Science
445

A Study of Indoor Ultra-wideband Propagation Measurement and Characterization

Bayram, Ahmet 25 May 2004 (has links)
Ultra-wideband (UWB) communication is emerging as a new wireless technology, which promises high data rates with low interference and low power consumption. The development of such UWB systems requires a sufficiently large amount of data to characterize the propagation behavior of UWB signals in indoor environments and develop accurate channel models. This thesis focuses primarily on a frequency-domain approach for propagation measurements and characterization of indoor UWB channels. This approach is based on measurements of the amplitude using a scalar network analyzer and retrieval of the phase from the amplitude data using a Hilbert transform relationship. Extensive propagation data are collected in a frequency range of 1 to 12 GHz in two buildings on Virginia Tech campus. Using the data, channel characterization results are obtained and compared to those based on time-domain measurements. Some statistical results for small-scale fading, path loss exponent, and signal quality are presented. This comparison validates the accuracy of measured results for the UWB measurement campaign. The measured data also reaffirms the immunity of UWB propagation to small-scale fading which is present in narrowband wireless communication systems. In addition to channel propagation measurements, signal distortions in UWB links, due to bandwidth limitations of antenna characteristics as well as the dispersive behavior of building materials, are also examined. In particular, the distortion of radiated signals by TEM horn antennas along off-boresight directions are studied experimentally. Furthermore, pulse distortions resulting from propagation through dispersive walls are demonstrated by simulation. The roles of receive-transmit antennas in a UWB link are examined, and the requirements for gain, input impedance, polarization, and phase of the radiated signal necessary for minimization of signal distortions are pointed out. / Master of Science
446

Analysis and Dynamic Range Enhancement of the Analog-to-Digital Interface in Multimode Radio Receivers

Fox, Brian L. 25 February 1997 (has links)
The rapidly developing wireless market has spawned a multitude of different standards for cellular, PCS, and wireless data. To allow users the ability to access services conforming to disparate standards, multimode handsets capable of software reconfiguration are needed. These "software radios" are distinguished from their traditional counterparts by their strong reliance on digital channel filtering and demodulation which may be reprogrammed to receive different standards. In these radios, higher dynamic range is required from the analog portion, most notably, the analog-to-digital converter (ADC). This research examines through analysis and simulation the performance requirements of analog-to-digital converters for use in radios which are conformant to the AMPS, IS-54, GSM, and IS-95 cellular standards. Simulations reveal the degradation in performance under conditions of off-channel interference, fading, and converter nonlinearities. Included in this analysis is the design of automatic gain control (AGC) for narrowband and IS-95 spread spectrum systems to optimize quantization noise and distortion due to A/D overload. Lastly, methods for improving the dynamic range of the analog-to-digital interface such as nonuniform quantization, companding, and dither are presented. The development of a novel A/D using a direct-sequence pseudo-noise (DSPN) technique in conjunction with an asymmetrical quantizer is presented and compared with standard dither techniques. Advantages of this technique compared to ordinary ADC's include an almost one bit improvement in resolution, quantization noise whitening, elimination of A/D offsets, and the ability to simultaneously digitize multiple analog signals with a single quantizer. The technique requires no synchronization and is easily implemented. / Master of Science
447

Thin-Ply Laminate Viscoelasticity and Dimensional Stability in Deployable Space Structures

Yapa Hamillage, Milinda Madhusanka Yapa 01 January 2023 (has links) (PDF)
Thin-ply composite materials display remarkable versatility and hold great promise for applications in the space industry. They are characterized by exceptional attributes such as a high strength-to-weight ratio, fatigue resistance, and the ability to conform to high curvatures without failure. This study investigates the behavior of thin-ply composite materials and structures, with a particular emphasis on their relevance to deployable space applications. Deployable structures such as solar sails, are large structures that are designed to be compactly folded into small volumes to fit inside the spacecraft for the purpose of carrying them to space. These structures utilize the strain energy during folding, to facilitate the deployment sequence and attain the intended original configuration of the structure. However, the viscoelastic nature of the composite material leads to a reduction of strain energy over the storage period, leading to shape inaccuracies after deployment. Our research includes an in-depth analysis of the viscoelastic properties of the composite material and the behavior of structures following folding and subsequent deployment. The viscoelastic mechanical properties of the materials were assessed through a numerical multi-scale homogenization approach. We examined thin-ply laminates with varying orientations and ply arrangements and conducted experimental studies to validate the numerical models. We subsequently incorporated the viscoelastic properties of the laminates into the simulation of deployable structures. The laminate properties were evaluated both at the ply level and at the laminate level. Numerical simulations were conducted to study the behavior of a composite boom during folding, stowage, deployment, and subsequent shape recovery. Our research extended to characterizing the composite material based on available test data, as well as examining the stowage and recovery behavior of a structure constructed from unidirectional composites.
448

Image Quality Assessment of 3D Synthesized Views / Évaluation de la qualité des images obtenues par synthèse de vues 3D

Tian, Shishun 22 March 2019 (has links)
Depth-Image-Based Rendering (DIBR) est une technologie fondamentale dans plusieurs applications liées à la 3D, telles que la vidéo en mode point de vue libre (FVV), la réalité virtuelle (VR) et la réalité augmentée (AR). Cependant, l'évaluation de la qualité des vues synthétisées par DIBR a également posé de nouveaux problèmes, car ce processus induit de nouveaux types de distorsions, qui sont intrinsèquement différentes des distorsions provoquées par le codage vidéo. Ce travail est destiné à mieux évaluer la qualité des vues synthétisées par DIBR en multimédia immersif. Au chapitre 2, nous proposons deux métriques complètements sans référence (NR). Le principe de la première métrique NR NIQSV consiste à utiliser plusieurs opérations morphologiques d’ouverture et de fermeture pour détecter et mesurer les distorsions, telles que les régions floues et l’effritement. Dans la deuxième métrique NR NIQSV+, nous améliorons NIQSV en ajoutant un détecteur de “black hole” et une détection “stretching”.Au chapitre 3, nous proposons deux métriques de référence complète pour traiter les distorsions géométriques à l'aide d'un masque de désocclusion et d'une méthode de correspondance de blocs multi-résolution. Au chapitre 4, nous présentons une nouvelle base de données d'images synthétisée par DIBR avec ses scores subjectifs associés. Ce travail se concentre sur les distorsions uniquement induites par différentes méthodes de synthèse de DIBR qui déterminent la qualité d’expérience (QoE) de ces applications liées à DIBR. En outre, nous effectuons également une analyse de référence des mesures d'évaluation de la qualité objective de pointe pour les vues synthétisées par DIBR sur cette base de données. Le chapitre 5 conclut les contributions de cette thèse et donne quelques orientations pour les travaux futurs. / Depth-Image-Based Rendering (DIBR) is a fundamental technology in several 3D-related applications, such as Free viewpoint video (FVV), Virtual Reality (VR) and Augmented Reality (AR). However, new challenges have also been brought in assessing the quality of DIBR-synthesized views since this process induces some new types of distortions, which are inherently different from the distortions caused by video coding. This work is dedicated to better evaluate the quality of DIBRsynthesized views in immersive multimedia. In chapter 2, we propose a completely No-reference (NR) metric. The principle of the first NR metrics NIQSV is to use a couple of opening and closing morphological operations to detect and measure the distortions, such as “blurry regions” and “crumbling”. In the second NR metric NIQSV+, we improve NIQSV by adding a “black hole” and a “stretching” detection. In chapter 3, we propose two Fullreference metrics to handle the geometric distortions by using a dis-occlusion mask and a multi-resolution block matching methods.In chapter 4, we present a new DIBR-synthesized image database with its associated subjective scores. This work focuses on the distortions only induced by different DIBR synthesis methods which determine the quality of experience (QoE) of these DIBR related applications. In addition, we also conduct a benchmark of the state-of-the-art objective quality assessment metrics for DIBR-synthesized views on this database. The chapter 5 concludes the contributions of this thesis and gives some directions of future work.
449

Étude et implémentation d'une architecture temps réel pour l'optimisation de la compression H.264/AVC de vidéos SD/HD / Study and implementation of a real-time architecture for the optimization of H.264/AVC compression of SD/HD videos

Vidal, Eloïse 15 April 2014 (has links)
La vidéo sur IP a connu un essor rapide ces dernières années allant de la diffusion télévisuelle en haute qualité via des réseaux dédiés à la diffusion sur internet de contenus vidéo grand public. L’optimisation de l’encodage vidéo H.264/AVC permet aux différents acteurs du marché de se différencier en proposant des solutions pour réduire le débit nécessaire à la représentation d’un flux vidéo ainsi que pour améliorer la qualité perçue par les utilisateurs. C’est dans ce contexte de vidéo professionnelle en haute qualité que s’inscrivent ces travaux de thèse CIFRE réalisés au sein de l’entreprise Digigram, proposant des encodeurs vidéo temps réel pour des diffusions professionnelles en direct. Nous proposons deux solutions de prétraitement pour répondre aux problématiques du secteur de la distribution vidéo. Les deux solutions considèrent les caractéristiques du système visuel humain en exploitant un modèle de JND (Just Noticeable Distortion) définissant des seuils de perception en fonction d’une analyse du contenu des séquences vidéo à encoder. La première solution utilise un préfiltre adaptatif indépendant de l’encodeur, contrôlé par un modèle JND afin d'éliminer le contenu perceptuellement non pertinent et ainsi réduire le débit sans altérer la qualité ressentie. Une analyse approfondie de plusieurs filtres de la littérature, dont le filtre AWA (Adaptive Weighted Averaging) et le filtre bilatéral, nous a également amené à définir deux nouveaux filtres à support étendu qui permettent d’exploiter au mieux les corrélations dans les images haute définition. A l’aide de tests subjectifs, nous montrons que les préfiltres perceptuels proposés permettent en moyenne de diminuer le débit en sortie du codeur d'environ 20% pour une qualité constante en encodage VBR (débit variable) Intra et Inter-image. Finalement, une deuxième solution s’attache à améliorer la qualité perçue dans un contexte d’encodage CBR (débit constant) en intégrant un modèle JND dans l’une des implémentations de la norme H.264/AVC la plus reconnue, le codec x264. Une quantification adaptative perceptuelle est ainsi proposée permettant d’améliorer les performances du codec x264 en améliorant le codage de l’information de contour à moyen et bas débits en encodage intra et inter-image. / The use of digital video over IP has increased exponentially over the last years, due to the development of high-speed networks dedicated to high quality TV transmission as well as the wide development of the nonprofessional video webcast. Optimization of the H.264/AVC encoding process allows manufacturers to offer differentiating encoding solutions, by reducing the bandwidth necessary for transmitting a video sequence at a given quality level, or improving the quality perceived by final users at a fixed bit rate. This thesis was carried out at the company Digigram in a context of professional high quality video. We propose two solutions of preprocessing which consider the characteristics of the human visual system by exploiting a JND profile (Just Noticeable Distortion). A JND model defines perceptual thresholds, below which a distortion cannot be seen, according to the video content. The first solution proposes an adaptive pre-filter independent to the encoder, controlled by a JND profile to reduce the perceptually non-relevant content and so reduce the bitrate while maintaining the perceived quality. By analyzing the state-of-the-art literature, the AWA (Adaptive Weighted Averaging) and Bilateral filters have been selected. Then we define two new filters using a large convolution mask, which enable to better exploit correlations in high-definition video contents. Through subjective tests, we show that the proposed perceptual prefilters give an average bitrate reduction of 20% for the same visual quality in VBR (Variable Bitrate) H.264/AVC Intra and Inter encoding. Finally, the second solution enables to improve the perceived quality in CBR (Constant Bitrate) encoding, by integrating the JND profile into the x264 codec, one of the best implementation of the H.264/AVC standard. Thus, we propose a perceptual adaptive quantization which enhances the x264 performance by improving edge information coding in low and middle bitrate applications.
450

PA efficiency enhancement using digital linearization techniques in uplink cognitive radio systems / Amélioration du rendement de l’amplificateur de puissance en utilisant une technique de linéarisation numérique pour une liaison montante dans un contexte radio intelligente.

Ben mabrouk, Mouna 02 December 2015 (has links)
Pour un terminal mobile alimenté sur batterie, le rendement de l’amplificateur de puissance (AP) doit êtreoptimisé. Cette optimisation peut rendre non-linéaire la fonction d’amplification de l’AP. Pour compenser lesdistorsions introduites par le caractère non-linéaire de l’AP, un détecteur numérique fondé sur un modèle deVolterra peut être utilisé. Le comportement de l’AP et le canal étant modélisé par le modèle de Volterra, uneapproche par filtrage de Kalman (FK) permet d’estimer conjointement les noyaux de Volterra et les symbolestransmis. Dans ce travail, nous proposons de traiter cette problématique dans le cadre d’une liaison montantedans un contexte radio intelligente (RI). Dans ce cas, des contraintes supplémentaires doivent être prises encompte. En effet, étant donné que la RI peut changer de bande de fréquence de fonctionnement, les nonlinéaritésde l’AP peuvent varier en fonction du temps. Par conséquent, nous proposons de concevoir une postdistorsionnumérique fondée sur une modélisation par modèles multiples combinant plusieurs estimateurs àbase de FK. Les différents FK permettant de prendre en compte les différentes dynamiques du modèle.Ainsi, les variations temporelles des noyaux de Volterra peuvent être suivies tout en gardant des estimationsprécises lorsque ces noyaux sont statiques. Le cas d’un signal monoporteuse est adressé et validé par desrésultats de simulation. Enfin, la pertinence de l’approche proposée est confirmée par des mesures effectuéessur un AP large bande (300-3000) MHz. / For a battery driven terminal, the power amplifier (PA) efficiency must be optimized. Consequently,non-linearities may appear at the PA output in the transmission chain. To compensatethese distortions, one solution consists in using a digital post-distorter based on aVolterra model of both the PA and the channel and a Kalman filter (KF) based algorithm tojointly estimate the Volterra kernels and the transmitted symbols. Here, we suggest addressingthis issue when dealing with uplink cognitive radio (CR) system. In this case, additionalconstraints must be taken into account. Since the CR terminal may switch from one subbandto another, the PA non-linearities may vary over time. Therefore, we propose to designa digital post-distorter based on an interacting multiple model combining various KF basedestimators using different model parameter dynamics. This makes it possible to track thetime variations of the Volterra kernels while keeping accurate estimates when those parametersare static. Furthermore, the single carrier case is addressed and validated by simulationresults. In addition, the relevance of the proposed approach is confirmed by measurementscarried on a (300-3000) MHz broadband PA.

Page generated in 0.056 seconds