• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 21
  • 17
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 158
  • 158
  • 22
  • 21
  • 20
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Interactive generation of circuit descriptions

Marquez, Juan Alberto. January 1984 (has links)
No description available.
82

Clamped-mode fixed frequency series resonant converter: off- line application, analysis and implementation

Sabaté, Juan A. 13 October 2010 (has links)
The performance of the clamped-mode series resonant converter operating at a fixed frequency is studied for off line applications. A new set of characteristics for the converter operating above and below resonant frequency has been developed by including the effect of losses in the analysis. Based on the analytical results, design guidelines are established and two prototypes were built to operate below and above resonant frequency respectively. The advantages and limitations of the two breadboards are assessed and their major sources of loss identified. / Master of Science
83

Frequency-domain analysis of memoryless nonlinearities having large-signal, almost periodic excitations

Keller, Donald Michael January 1988 (has links)
Numerical frequency-domain techniques are widely used for the a.c. steady-state analysis of nonlinear electric circuits. Such techniques require that one compute the Fourier series for the response of each nonlinear circuit element, given a known excitation. Current approaches to this computation encounter difficulty when the response is almost periodic (that is, when the frequencies in its Fourier series are not all harmonically related), especially when the nonlinear characteristic is abrupt and the Fourier series for the response contains many significant terms. This dissertation develops an alternative approach that is theoretically sound and computationally efficient, for the important special case of a memoryless nonlinearity described by a continuous, bounded function. To begin the development, basic properties of almost periodic functions are presented. It is proven that the response of a memoryless nonlinearity is almost periodic whenever the excitation is. Next, the concept of a basis for a set of frequencies is introduced. The frequency content of the response is investigated, and it is proven that the frequencies in the response have the same basis as those in the excitation. The Fourier series for an almost periodic function is discussed, and its coefficients are expressed as mean values taken over an infinite interval. Results are given for the summability of the series. Starting with a theorem from Diophantine Approximation, it is proven that the normalized (Hertzian) phases corresponding to a set of M basis frequencies have their fractional parts uniformly distributed in an M-dimensional unit cube. This property of uniform phase distribution is then used to convert the single-dimensional integral for the Fourier series coefficients into a multiple integral over the unit cube, with the dimension of the integral equal to the number of basis frequencies in the Fourier series. A multi-dimensional extension of the Discrete Fourier Transform is used to evaluate the multiple integral, and expressions for aliasing are derived. It is shown that the multiple integral formulation compares favorably with existing approaches, and several numerical examples are presented to illustrate this formulation's capabilities. / Ph. D.
84

Adaptive optimal control of AC/DC systems

Rostamkolai, Niusha January 1986 (has links)
The dissertation presents a new control strategy for two terminal HVDC systems embedded in an AC network. The control is based upon real-time measurements performed on the AC/DC system. Use is made of a technique for high speed accurate measurement of positive sequence voltages and currents, first developed in the field of computer relaying. The real-time measurements provides a term in the control law to compensate for inaccuracies following departure from the operating point. The control criterion is to damp out the electromechanical oscillations following a disturbance. The main contribution of the dissertation is to describe a new optimal controller formulation which contains a measurement based component. Optimal controllers are commonly constructed using linearized equations of the system around the operating point. In DC systems this approach is of a very limited value because of a highly nonlinear nature of the system. With the controller developed in this dissertation, it becomes possible to describe the system as a nonlinear dynamic system. The approximation resulting from the usual linearization of the system equations is thus avoided, and leads to a better controller design. The control technique is illustrated with a small AC/DC system. However, the equations formulated are sufficiently general, so that the technique can be applied to a larger system. Simulation results are included to represent the effectiveness of the developed controller. / Ph. D.
85

Design and realization of switched capacitor filters

Yassine, Hatem Mahmoud January 1985 (has links)
No description available.
86

Circuitos elétricos equivalentes para polímeros piezoelétricos termo-formados / Equivalent electric circuits for thermo-formed piezoelectric polymers

Carvalho, Felipe José de 30 September 2016 (has links)
Os circuitos ou modelos elétricos equivalentes destinam-se à modelagem de transdutores piezoelétricos, incluindo todo seu comportamento eletromecânico. Os modelos elétricos convencionais e clássicos foram elaborados inicialmente para materiais cerâmicos e cristalinos e só posteriormente adaptados para a simulação de polímeros piezoelétricos. Seguindo estes estudos, este trabalho apresenta um circuito elétrico equivalente para transdutores construídos com a tecnologia dos piezoeletretos termo-formados, desenvolvida no Grupo de Alta Tensão e Materiais da Escola de Engenharia de São Carlos (EESC-USP). Este circuito, baseado em um modelo proposto por Fiorillo (2000) para simular um transdutor curvo de fluoreto de polivinilideno (PVDF), foi aprimorado para melhor representar o comportamento em baixas frequências. Nele existem dois ramos: um mecânico e um elétrico. Os parâmetros do ramo mecânico foram calculados nas proximidades da frequência de ressonância das amostras, enquanto que os componentes do ramo elétrico foram determinados pelos ajustes das curvas de condutância e de susceptância para frequências distantes da ressonância. Esta etapa compreendeu o desenvolvimento de um algoritmo baseado na taxa de variação da condutância pela frequência, o qual permitiu determinar um método para separação do espectro de frequência em uma região próxima e outra distante da frequência de ressonância. Após a determinação de todos os parâmetros do modelo elétrico, circuitos para simulação no software Pspice foram elaborados para cada transdutor. Os resultados das simulações da condutância, da susceptância, do módulo da impedância e do ângulo de fase dos circuitos mostraram relevante concordância com as medições quando comparados grafica e numericamente. Esta última análise foi feita através da expressão de erro relativo percentual médio. Neste trabalho, empregou-se a metodologia fundamentada nas medidas da condutância e da susceptância de diferentes amostras, incluindo filmes de polipropileno (PP), de PVDF e de piezoeletretos de canais tubulares abertos de Teflon®FEP. / Equivalent electric circuits or models are regularly employed in piezoelectric transducers modeling, including its electromechanical behavior. Conventional and classic electric models were initially developed for ceramic and crystalline materials and later adapted for simulating piezoelectric polymers. Following these studies, this work presents an equivalent electric circuit for transducers built with the piezoelectret thermo-formed technology, developed by the High Voltage and Materials Group of São Carlos Engineering School (EESC-USP). This circuit, based on a model proposed by Fiorillo (2000) for simulating a curved polyvinylidene fluoride (PVDF) transducer, was improved to represent the behavior at low frequencies. There are two branches in this circuit: a mechanical and an electrical branches. The mechanical branch parameters were calculated in the vicinity of the resonance frequency, whereas the components of the electrical branch were determined by conductance and susceptance curves fittings for frequencies far from resonance. This stage included the development of an algorithm based on the rate of change of conductance, which allowed determining a method to separate the frequency spectrum in near resonance and far from resonance. After determining all parameters, electrical circuits were designed to perform simulations using Pspice software. The results for conductance, susceptance, impedance magnitude and phase angle simulations presented relevant agreement with measurements when compared graphically and numerically. This latter analysis was done by error relative expression. In this work, the methodology was based on conductance and susceptance measurements for different samples, including porous polypropylene (PP), PVDF and Teflon®FEP piezoelectrets with open-tubular channels films.
87

Use of Monotonic Static Logic in Scaled, Leaky CMOS Technologies

Irez, Kagan January 2015 (has links)
This dissertation explores the characteristics of Monotonic-Static CMOS and its potential applications in leakage reduction in ultra scaled Bulk-Si technology with significant gate leakage currents. Using test circuits consisting of different configurations of 16-bit lookahead adders, we performed a comparison among static, monotonic static and domino logic in terms of various properties including power, delay, noise margin and area. Comparisons were done over a wide range of possible transistor widths to fully characterize the tradeoffs for each circuit type. Experimental results show that MS-CMOS has potential advantages in some situations in terms of stand-by power, evaluation speed and noise margin in such a technology.
88

Architectures, Antennas and Circuits for Millimeter-wave Wireless Full-Duplex Applications

Dinc, Tolga January 2018 (has links)
Demand for wireless network capacity keeps growing exponentially every year, as a result a 1000-fold increase in data traffic is projected over the next 10 years in the context of 5G wireless networks. Solutions for delivering the 1000-fold increase in capacity fall into three main categories: deploying smaller cells, allocating more spectrum and improving spectral efficiency of wireless systems. Smaller cells at RF frequencies (1-6GHz) are unlikely to deliver the demanded capacity increase. On the other hand, millimeter-wave spectrum (frequencies over 24GHz) offers wider, multi-GHz channel bandwidths, and therefore has gained significant research interest as one of the most promising solutions to address the data traffic demands of 5G. Another disruptive technology is full-duplex which breaks a century-old assumption in wireless communication, by simultaneous transmission and reception on the same frequency channel. In doing so, full-duplex offers many benefits for wireless networks, including an immediate spectral efficiency improvement in the physical layer. Although FD promises great benefits, self-interference from the transmitter to its own receiver poses a fundamental challenge. The self-interference can be more than a billion times stronger than the desired signal and must be suppressed below the receiver noise floor. In recent years, there has been some research efforts on fully-integrated full-duplex RF transceivers, but mm-wave fully-integrated full-duplex systems, are still in their infancy. This dissertation presents novel architectures, antenna and circuit techniques to merge two exciting technologies, mm-wave and full-duplex, which can potentially offer the dual benefits of wide bandwidths and improved spectral efficiency. To this end, two different antenna interfaces, namely a wideband reconfigurable T/R antenna pair with polarization-based antenna cancellation and an mm-wave fully-integrated magnetic-free non-reciprocal circulator, are presented. The polarization-based antenna cancellation is employed in conjunction with the RF and digital cancellation to design a 60GHz full-duplex 45nm SOI CMOS transceiver with nearly 80dB self-interference suppression. The concepts and prototypes presented in this dissertation have also profound implications for emerging applications such as vehicular radars, 5G small-cell base-stations and virtual reality.
89

An investigation into multi-spectral excitation power sources for Electrical Impedance Tomography

Qureshi, Tabassum-Ur-Razaq January 2017 (has links)
Electrical Impedance Tomography is a non-invasive, non-ionizing, non-destructive and painless imaging technology that can distinguish between cancerous and non-cancerous cells by reproducing tomographic images of the electrical impedance distribution within the body. The primary scope of this thesis is the study of hardware modules required for an EIT system. The key component in any EIT system is the excitation system. Impedance measurement can be performed by applying either a current or voltage through emitting electrodes and then measuring the resulting voltages or current on receiving electrodes. In this research, both types of excitation systems are investigated and developed for the Sussex EIM system. Firstly, a current source (CS) excitation system is investigated and developed. The performance of the excitation system degrades due to the unwanted capacitance within the system. Hence two CS circuits: Enhance Howland Source (EHS) and EHS combined with a General impedance convertor (GIC: to minimise the unwanted capacitance) are evaluated. Another technique (guard-amplifier) has also been investigated and developed to minimise the effect of stray capacitance. The accuracy of both types of CS circuits are evaluated in terms of its output impedance along with other performance parameters for different loading conditions and the results are compared to show their performance. Both CS circuits were affected by the loading voltage problem. A bootstrapping technique is investigated and integrated with both CS circuits to overcome the loading voltage problem. The research shows that both CS circuits were unable to achieve a high frequency bandwidth (i.e. ≥10MHz) and were limited to 2-3MHz. Alternatively, a discrete components current source was also investigated and developed to achieve a high frequency bandwidth and other desirable performance parameters. The research also introduces a microcontroller module to control the multiplexing involved for different CS circuit configurations via serial port interface software running on a PC. For breast cancer diagnosis, the interesting characteristics of breast tissues mostly lie above 1MHz, therefore a wideband excitation source covering high frequencies (i.e. ≥1-10MHz) is required. Hence, a second type of the excitation system is investigated. A constant voltage source (VS) circuit was developed for a wide frequency bandwidth with low output impedance. The research investigated three VS architectures and based on their initial bandwidth comparison, a differential VS system was developed to provide a wide frequency bandwidth (≥10MHz). The research presents the performance of the developed VS excitation system for different loading configurations reporting acceptable performance parameters. A voltage measurement system is also developed in this research work. Two different differential amplifier circuits were investigated and developed to measure precise differential voltage at a high frequency. The research reports a performance comparison of possible types of excitation systems. Results are compared to establish their relationship to performance parameters: frequency bandwidth, output impedance, SNR and phase difference over a wide bandwidth (i.e. up to 10MHz). The objective of this study is to investigate which design is the most appropriate for constructing a wideband excitation system for the Sussex EIM system or any other EIT based biomedical application with wide a bandwidth requirement.
90

Circuitos elétricos equivalentes para polímeros piezoelétricos termo-formados / Equivalent electric circuits for thermo-formed piezoelectric polymers

Felipe José de Carvalho 30 September 2016 (has links)
Os circuitos ou modelos elétricos equivalentes destinam-se à modelagem de transdutores piezoelétricos, incluindo todo seu comportamento eletromecânico. Os modelos elétricos convencionais e clássicos foram elaborados inicialmente para materiais cerâmicos e cristalinos e só posteriormente adaptados para a simulação de polímeros piezoelétricos. Seguindo estes estudos, este trabalho apresenta um circuito elétrico equivalente para transdutores construídos com a tecnologia dos piezoeletretos termo-formados, desenvolvida no Grupo de Alta Tensão e Materiais da Escola de Engenharia de São Carlos (EESC-USP). Este circuito, baseado em um modelo proposto por Fiorillo (2000) para simular um transdutor curvo de fluoreto de polivinilideno (PVDF), foi aprimorado para melhor representar o comportamento em baixas frequências. Nele existem dois ramos: um mecânico e um elétrico. Os parâmetros do ramo mecânico foram calculados nas proximidades da frequência de ressonância das amostras, enquanto que os componentes do ramo elétrico foram determinados pelos ajustes das curvas de condutância e de susceptância para frequências distantes da ressonância. Esta etapa compreendeu o desenvolvimento de um algoritmo baseado na taxa de variação da condutância pela frequência, o qual permitiu determinar um método para separação do espectro de frequência em uma região próxima e outra distante da frequência de ressonância. Após a determinação de todos os parâmetros do modelo elétrico, circuitos para simulação no software Pspice foram elaborados para cada transdutor. Os resultados das simulações da condutância, da susceptância, do módulo da impedância e do ângulo de fase dos circuitos mostraram relevante concordância com as medições quando comparados grafica e numericamente. Esta última análise foi feita através da expressão de erro relativo percentual médio. Neste trabalho, empregou-se a metodologia fundamentada nas medidas da condutância e da susceptância de diferentes amostras, incluindo filmes de polipropileno (PP), de PVDF e de piezoeletretos de canais tubulares abertos de Teflon®FEP. / Equivalent electric circuits or models are regularly employed in piezoelectric transducers modeling, including its electromechanical behavior. Conventional and classic electric models were initially developed for ceramic and crystalline materials and later adapted for simulating piezoelectric polymers. Following these studies, this work presents an equivalent electric circuit for transducers built with the piezoelectret thermo-formed technology, developed by the High Voltage and Materials Group of São Carlos Engineering School (EESC-USP). This circuit, based on a model proposed by Fiorillo (2000) for simulating a curved polyvinylidene fluoride (PVDF) transducer, was improved to represent the behavior at low frequencies. There are two branches in this circuit: a mechanical and an electrical branches. The mechanical branch parameters were calculated in the vicinity of the resonance frequency, whereas the components of the electrical branch were determined by conductance and susceptance curves fittings for frequencies far from resonance. This stage included the development of an algorithm based on the rate of change of conductance, which allowed determining a method to separate the frequency spectrum in near resonance and far from resonance. After determining all parameters, electrical circuits were designed to perform simulations using Pspice software. The results for conductance, susceptance, impedance magnitude and phase angle simulations presented relevant agreement with measurements when compared graphically and numerically. This latter analysis was done by error relative expression. In this work, the methodology was based on conductance and susceptance measurements for different samples, including porous polypropylene (PP), PVDF and Teflon®FEP piezoelectrets with open-tubular channels films.

Page generated in 0.0528 seconds