• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 15
  • 10
  • 9
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Microscale optical thermometry techniques for measuring liquid phase and wall surface temperatures

Kim, Myeongsub 22 December 2010 (has links)
Thermal management challenges for microelectronics are a major issue for future integrated circuits, thanks to the continued exponential growth in component density described by Moore¡¯s Law. Current projections from the International Technology Roadmap for Semiconductors predict that local heat fluxes will exceed 1 kW/cm2 within a decade. There is thus an urgent need to develop new compact, high heat flux forced-liquid and evaporative cooling technologies. Thermometry techniques that can measure temperature fields with micron-scale resolution without disturbing the flow of coolant would be valuable in developing and evaluating new thermal management technologies. Specifically, the ability to estimate local convective heat transfer coefficients, which are proportional to the difference between the bulk coolant and wall surface temperatures, would be useful in developing computationally efficient reduced-order models of thermal transport in microscale heat exchangers. The objective of this doctoral thesis is therefore to develop and evaluate non-intrusive optical thermometry techniques to measure wall surface and bulk liquid temperatures with O(1-10 micronmeter) spatial resolution. Intensity-based fluorescence thermometry (FT), where the temperature distribution of an aqueous fluorescent dye solution is estimated from variations in the fluorescent emission intensity, was used to measure temperatures in steady Poiseuille flow at Reynolds numbers less than 10. The flow was driven through 1 mm square channels heated on one side to create temperature gradients exceeding 8 ¡ÆC/mm along both dimensions of the channel cross-section. In the evanescent-wave fluorescence thermometry (EFT) experiments, a solution of fluorescein was illuminated by evanescent waves to estimate the solution temperature within about 300 nm of the wall. In the dual-tracer FT (DFT) studies, a solution of two fluorophores with opposite temperature sensitivities was volumetrically illuminated over most of the `cross-section of the channel to determine solution temperatures in the bulk flow. The accuracy of both types of FT is determined by comparing the temperature data with numerical predictions obtained with commercial computational fluid dynamics software. The results indicate that EFT can measure wall surface temperatures with an average accuracy of about 0.3 ¡ÆC at a spatial resolution of 10 micronmeter, and that DFT can measure bulk water temperature fields with an average accuracy of about 0.3 ¡ÆC at a spatial resolution of 50 micronmeter in the image plane. The results also suggest that the spatial resolution of the DFT data along the optical axis (i.e., normal to the image plane) is at least an order of magnitude greater than the depth of focus of the imaging system.
12

Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronics Devices

Wei, Xiaojin 30 November 2004 (has links)
A stacked microchannel heat sink was developed to provide efficient cooling for microelectronics devices at a relatively low pressure drop while maintaining chip temperature uniformity. Microfabrication techniques were employed to fabricate the stacked microchannel structure, and experiments were conducted to study its thermal performance. A total thermal resistance of less than 0.1 K/W was demonstrated for both counter flow and parallel flow configurations. The effects of flow direction and interlayer flow rate ratio were investigated. It was found that for the low flow rate range the parallel flow arrangement results in a better overall thermal performance than the counter flow arrangement; whereas, for the large flow rate range, the total thermal resistances for both the counter flow and parallel flow configurations are indistinguishable. On the other hand, the counter flow arrangement provides better temperature uniformity for the entire flow rate range tested. The effects of localized heating on the overall thermal performance were examined by selectively applying electrical power to the heaters. Numerical simulations were conducted to study the conjugate heat transfer inside the stacked microchannels. Negative heat flux conditions were found near the outlets of the microchannels for the counter flow arrangement. This is particularly evident for small flow rates. The numerical results clearly explain why the total thermal resistance for counter flow arrangement is larger than that for the parallel flow at low flow rates. In addition, laminar flow inside the microchannels were characterized using Micro-PIV techniques. Microchannels of different width were fabricated in silicon, the smallest channel measuring 34 mm in width. Measurements were conducted at various channel depths. Measured velocity profiles at these depths were found to be in reasonable agreement with laminar flow theory. Micro-PIV measurement found that the maximum velocity is shifted significantly towards the top of the microchannels due to the sidewall slope, a common issue faced with DRIE etching. Numerical simulations were conducted to investigate the effects of the sidewall slope on the flow and heat transfer. The results show that the effects of large sidewall slope on heat transfer are significant; whereas, the effects on pressure drop are not as pronounced.
13

Numerical Study Of Heat Transfer From Pin Fin Heat Sink Using Steady And Pulsated Impinging Jets

Sanyal, Anuradha 04 1900 (has links)
The work reported in this thesis is an attempt to enhance heat transfer in electronic devices with the use of impinging air jets on pin-finned heat sinks. The cooling per-formance of electronic devices has attracted increased attention owing to the demand of compact size, higher power densities and demands on system performance and re-liability. Although the technology of cooling has greatly advanced, the main cause of malfunction of the electronic devices remains overheating. The problem arises due to restriction of space and also due to high heat dissipation rates, which have increased from a fraction of a W/cm2to 100s of W /cm2. Although several researchers have at-tempted to address this at the design stage, unfortunately the speed of invention of cooling mechanism has not kept pace with the ever-increasing requirement of heat re- moval from electronic chips. As a result, efficient cooling of electronic chip remains a challenge in thermal engineering. Heat transfer can be enhanced by several ways like air cooling, liquid cooling, phase change cooling etc. However, in certain applications due to limitations on cost and weight, eg. air borne application, air cooling is imperative. The heat transfer can be increased by two ways. First, increasing the heat transfer coefficient (forced convec- tion), and second, increasing the surface area of heat transfer (finned heat sinks). From previous literature it was established that for a given volumetric air flow rate, jet im-pingement is the best option for enhancing heat transfer coefficient and for a given volume of heat sink material pin-finned heat sinks are the best option because of their high surface area to volume ratio. There are certain applications where very high jet velocities cannot be used because of limitations of noise and presence of delicate components. This process can further be improved by pulsating the jet. A steady jet often stabilizes the boundary layer on the surface to be cooled. Enhancement in the convective heat transfer can be achieved if the boundary layer is broken. Disruptions in the boundary layer can be caused by pulsating the impinging jet, i.e., making the jet unsteady. Besides, the pulsations lead to chaotic mixing, i.e., the fluid particles no more follow well defined streamlines but move unpredictably through the stagnation region. Thus the flow mimics turbulence at low Reynolds number. The pulsation should be done in such a way that the boundary layer can be disturbed periodically and yet adequate coolant is made available. So, that there is not much variation in temperature during one pulse cycle. From previous literature it was found that square waveform is most effective in enhancing heat transfer. In the present study the combined effect of pin-finned heat sink and impinging slot jet, both steady and unsteady, has been investigated for both laminar and turbulent flows. The effect of fin height and height of impingement has been studied. The jets have been pulsated in square waveform to study the effect of frequency and duty cycle. This thesis attempts to increase our understanding of the slot jet impingement on pin-finned heat sinks through numerical investigations. A systematic study is carried out using the finite-volume code FLUENT (Version 6.2) to solve the thermal and flow fields. The standard k-ε model for turbulence equations and two layer zonal model in wall function are used in the problem Pressure-velocity coupling is handled using the SIMPLE algorithm with a staggered grid. The parameters that affect the heat transfer coefficient are: height of the fins, total height of impingement, jet exit Reynolds number, frequency of the jet and duty cycle (percentage time the jet is flowing during one complete cycle of the pulse). From the studies carried out it was found that: a) beyond a certain height of the fin the rate of enhancement of heat transfer becomes very low with further increase in height, b) the heat transfer enhancement is much more sensitive to any changes at low Reynolds number than compared to high Reynolds number, c) for a given total height of impingement the use of fins and pulsated jet, increases the effective heat transfer coefficient by almost 200% for the same average Reynolds number, d) for all the cases it was observed that the optimum frequency of impingement is around 50 − 100 Hz and optimum duty cycle around 25-33.33%, e) in the case of turbulent jets the enhancement in heat transfer due to pulsations is very less compared to the enhancement in case of laminar jets.
14

Análise numérica e experimental na determinação da potência térmica dissipada em componentes eletrônicos /

Sousa, Reginaldo Ribeiro de. January 2008 (has links)
Orientador: Amarildo Tabone Paschoalini / Banca: Luiz de Paula do Nascimento / Banca: Marcelo Moreira Ganzarolli / Resumo: Os objetivos deste trabalho são determinar a potência térmica dissipada dos componentes eletrônicos de forma experimental e verificar a eficácia do método através de simulações numéricas computacionais utilizando o software comercial ANSYS. O Software ANSYS foi usado como ferramenta de Dinâmica de Fluidos Computacional neste trabalho. Para a realização deste trabalho um ensaio experimental foi executado a fim de obter alguns dados para o cálculo da potência térmica dissipada, outros foram fornecidos pelo CPqD e Trópico. Foi montado um Laboratório Computacional com o apoio da Trópico e do CPqD na UNESP, campus de Ilha Solteira para a simulações numéricas. O método de cálculo de potência apresentou-se eficaz, de modo na melhor situação os resultados apresentaram um erro relativo médio de 1,94%. / Abstract: The purpose of this study is to determine the thermal power dissipation of electronic components through an experimental test and verify the effectiveness of the method through numerical simulations using the computational software ANSYS commercial. Software ANSYS was used as a tool for Computational Fluid Dynamics for this work. For this work an experimental test was done to obtain some data to calculate the thermal power dissipation, others were supplied by CPqD, Nilko and Trópico. It was dubbed a Computer Laboratory with the support of the Trópico, CPqD and at UNESP, campus de Ilha Solteira for the numerical simulations. The method of calculation of power proved to be effective, that the better the results showed a mean relative error is 1.94%. / Mestre
15

Análise numérica e experimental na determinação da potência térmica dissipada em componentes eletrônicos

Sousa, Reginaldo Ribeiro de [UNESP] 28 November 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-11-28Bitstream added on 2014-06-13T19:55:37Z : No. of bitstreams: 1 sousa_rr_me_ilha.pdf: 2111422 bytes, checksum: 55ec661a37c8225f8f3075712c8ec225 (MD5) / Fundação de Ensino Pesquisa e Extensão de Ilha Solteira (FEPISA) / Os objetivos deste trabalho são determinar a potência térmica dissipada dos componentes eletrônicos de forma experimental e verificar a eficácia do método através de simulações numéricas computacionais utilizando o software comercial ANSYS. O Software ANSYS foi usado como ferramenta de Dinâmica de Fluidos Computacional neste trabalho. Para a realização deste trabalho um ensaio experimental foi executado a fim de obter alguns dados para o cálculo da potência térmica dissipada, outros foram fornecidos pelo CPqD e Trópico. Foi montado um Laboratório Computacional com o apoio da Trópico e do CPqD na UNESP, campus de Ilha Solteira para a simulações numéricas. O método de cálculo de potência apresentou-se eficaz, de modo na melhor situação os resultados apresentaram um erro relativo médio de 1,94%. / The purpose of this study is to determine the thermal power dissipation of electronic components through an experimental test and verify the effectiveness of the method through numerical simulations using the computational software ANSYS commercial. Software ANSYS was used as a tool for Computational Fluid Dynamics for this work. For this work an experimental test was done to obtain some data to calculate the thermal power dissipation, others were supplied by CPqD, Nilko and Trópico. It was dubbed a Computer Laboratory with the support of the Trópico, CPqD and at UNESP, campus de Ilha Solteira for the numerical simulations. The method of calculation of power proved to be effective, that the better the results showed a mean relative error is 1.94%.
16

Multi-Objective Analysis and Optimization of Integrated Cooling in Micro-Electronics With Hot Spots

Reddy, Sohail R. 12 June 2015 (has links)
With the demand of computing power from electronic chips on a constant rise, innovative methods are needed for effective and efficient thermal management. Forced convection cooling through an array of micro pin-fins acts not only as a heat sink, but also allows for the electrical interconnection between stacked layers of integrated circuits. This work performs a multi-objective optimization of three shapes of pin-fins to maximize the efficiency of this cooling system. An inverse design approach that allows for the design of cooling configurations without prior knowledge of thermal mapping was proposed and validated. The optimization study showed that pin-fin configurations are capable of containing heat flux levels of next generation electronic chips. It was also shown that even under these high heat fluxes the structural integrity is not compromised. The inverse approach showed that configurations exist that are capable of cooling heat fluxes beyond those of next generation chips. Thin film heat spreaders made of diamond and graphene nano-platelets were also investigated and showed that further reduction in maximum temperature, increase in temperature uniformity and reduction in thermal stresses are possible.
17

Performance of Marlow Materials in a Transverse Peltier Cooler

Verosky, Mark 08 October 2020 (has links)
No description available.
18

Design and optimisation of innovative electronic cooling heat sinks with enhanced thermal performances using numerical and experimental methods / Conception et optimisation de dissipateurs thermiques de refroidissement électronique innovants

Mehra, Bineet 08 March 2019 (has links)
Cette thèse de doctorat s’intéresse aux mécanismes d’amélioration des transferts dans des géométries de dissipateurs thermiques à plaques et ailettes. Une première partie est consacrée à l’étude d’une configuration académique à l’aide de simulations numériques visant à obtenir une amélioration du transfert de chaleur conjugué en modifiant uniquement par des découpes la forme géométrique des ailettes planes conductrices. Une analyse locale approfondie de l’écoulement et des champs thermiques a été effectuée avec notamment le principe de synergie locale, des champs de vitesse et de gradients thermiques, pour comprendre l’effet des modifications géométriques. Ce mémoire présente également le développement de dissipateurs aux performances thermo-aérauliques augmentées pour des applications de refroidissement de coffrets électronique embarqués. L’intensification des transferts thermiques est obtenue par la génération d’écoulements secondaires qui provoquent un brassage de fluide et réduisent la résistance thermique à la paroi en perturbant le développement de la couche limite thermique. Différentes configurations de dissipateurs avec deux types de générateurs d’écoulements secondaires, paires d’ailettes Delta et protrusions, ont été étudiées numériquement, en employant une modélisation de type « RANS ». Les performances thermo-aérauliques des géométries munies de générateurs de vorticité ont été comparées à celle d’un dissipateur thermique de référence « lisse ». Des prototypes ont également été fabriqués et testés sur un banc expérimental spécifiquement développé pour réaliser des mesures des performances globales en termes de puissance thermique et de pertes de charge. Les résultats expérimentaux et numériques ont été confrontés afin de qualifier les simulations réalisées. Par la suite, une étude d’optimisation employant l’analyse factorielle Taguchi a été utilisée afin d’optimiser les paramètres géométriques des dissipateurs retenus. Deux fonctions objectif ont été considérées : la maximisation du facteur de performance thermique à iso puissance de ventilation (PEC) et la réduction de la température moyenne de paroi du dissipateur par rapport au cas de référence. L’analyse des performances thermo-aérauliques globales des géométries étudiées a été complétée par une analyse qualitative locale des champs thermiques et d’écoulement notamment avec le principe de synergie. / This doctoral thesis focuses on mechanisms of heat transfer enhancement in plate and fin heat sink geometries. First part of the thesis is dedicated to study an academic configuration using numerical simulations to achieve an improvement in conjugate heat transfer by modifying only the geometrical shape (through punching) of the conductive plane fins. An in-depth local analysis of the flow and thermal fields was carried out with the local synergy principle, velocity and thermal gradients, to understand the effect of geometric modifications. This thesis also presents the development of heat sinks with increased thermo-hydraulic performance for on-board electronic box cooling applications. The intensification of the heat transfer is obtained by the generation of secondary flows which cause an intensive mixing of fluid and reduces the thermal resistance to the wall by disrupting the development of the thermal boundary layer. Different heat sink geometries with two types of secondary flow generators : delta winglet pair and protrusions were numerically studied using RANS approach. The thermo-hydraulic performances of the geometries equipped with vortex generators were compared with that of a smooth reference heat sink. The prototypes were also manufactured and tested on an experimental bench specifically designed to perform global performance measurements in terms of thermal power and pressure drops. Experimental and numerical results were compared to qualify the simulations performed. Subsequently, an optimization study using Taguchi factorial analysis was used to optimize the geometrical parameters of the chosen dissipaters. Two objective functions were considered : maximization of either iso-pumping power performance criteria (PEC) or average wall temperature of the dissipaters compared to the reference case. The global thermo-hydraulic performance analysis of the studied geometries was completed by a qualitative analysis of local flow and thermal fields, in particular with the local field synergy principle.
19

Gas assisted thin-film evaporation from confined spaces

Narayanan, Shankar 29 August 2011 (has links)
A novel cooling mechanism based on evaporation of thin liquid films is presented for thermal management of confined heat sources, such as microprocessor hotspots. The underlying idea involves utilization of thin nanoporous membranes for maintaining microscopically thin liquid films by capillary action, while providing a pathway for the vapor generated due to evaporation at the liquid-vapor interface. The vapor generated by evaporation is continuously removed by using a dry sweeping gas keeping the membrane outlet dry. This thesis presents a detailed theoretical, computational and experimental investigation of the heat and mass transfer mechanisms that result in dissipating heat. Performance analysis of this cooling mechanism demonstrates heat fluxes over 600W/cm2 for sufficiently thin membrane and film thicknesses (~1-5µm) and by using air jet impingement for advection of vapor from the membrane surface. Based on the results from this performance analysis, a monolithic micro-fluidic device is designed and fabricated incorporating micro and nanoscale features. This MEMS/NEMS device serves multiple functionalities of hotspot simulation, temperature sensing, and evaporative cooling. Subsequent experimental investigations using this microfluidic device demonstrate heat fluxes in excess of 600W/cm2 at 90 C using water as the evaporating coolant. In order to further enhance the device performance, a comprehensive theoretical and computational analysis of heat and mass transfer at micro and nanoscales is carried out. Since the coolant is confined using a nanoporous membrane, a detailed study of evaporation inside a nanoscale cylindrical pore is performed. The continuum analysis of water confined within a cylindrical nanopore determines the effect of electrostatic interaction and Van der Waals forces in addition to capillarity on the interfacial transport characteristics during evaporation. The detailed analysis demonstrates that the effective thermal resistance offered by the interface is negligible in comparison to the thermal resistance due to the thin film and vapor advection. In order to determine the factors limiting the performance of the MEMS device on a micro-scale, a device-level detailed computational analysis of heat and mass transfer is carried out, which is supported by experimental investigation. Identifying the contribution of various simultaneously occurring cooling mechanisms at different operating conditions, this analysis proposes utilization of hydrophilic membranes for maintaining very thin liquid films and further enhancement in vapor advection at the membrane outlet to achieve higher heat fluxes.
20

Etude des ferrofluides et de leurs applications à l'intensification des transferts de chaleur par convection forcée / Study of ferrofluids and their applications to the enhancement of heat transfer by forced convection

Cherief, Wahid 08 December 2015 (has links)
Cette thèse a pour objectif d’étudier les performances thermiques et rhéologiques des ferrofluides sous champ magnétique pour des applications de refroidissement. L’approche adoptée dans cette thèse est de nature macroscopique, et est basée sur plusieurs études expérimentales. Cette caractérisation des performances des ferrofluides est focalisée sur trois aspects : i) étude de la rhéologie ii) étude de la convection forcée iii) étude la conductivité thermique. Différents outils de caractérisation correspondant à chaque domaine d’étude ont été développés. Dans le domaine de la rhéologie, une cellule magnétique a été construite et adaptée à un rhéomètre afin d’étudier le comportement rhéologique du ferrofluide sous un champ magnétique allant jusqu’à 0,8 T. Cette démarche met en évidence l’influence du champ magnétique et de son intensité sur les forces de cisaillement. Dans le domaine des transferts de chaleur, une boucle thermohydraulique pour l’étude de l’échange de chaleur en convection forcée avec une paroi à flux imposée sous champ magnétique a été mise au point. Ce type de dispositif permet l’étude de plusieurs paramètres liés à la configuration spatiale du champ magnétique appliqué, à l’effet de l’uniformité du champ sur l’intensification des échanges de chaleur. La compréhension et l’analyse de ces résultats sont consolidées par l’étude de la conductivité thermique du ferrofluide sous champ magnétique. Un banc a été mis en place et a permis de mettre en évidence l’influence de la température ainsi que de l’intensité du champ magnétique sur cette grandeur. Á l’issue de ces caractérisations, l’application des ferrofluides pour le refroidissement de composants électroniques de puissance est discutée par une mise en œuvre expérimentale. Ces essais ouvrent la voie pour de nouvelles recherches et permettent de mener des réflexions relatives aux domaines d’application des ferrofluides. / This thesis aims to study the thermal and rheological performances of ferrofluids under magnetic field for an application in cooling systems. The approach consists on macroscopic analysis based on experimental studies. Our approach is focused on three aspects: i) rheology ii) internal forced convection iii) thermal conductivity. We developed different characterization benches. For rheological studies, a magnetic circuit is developed and integrated into rheometer to create magnetic fields reaching 0,8 T. This approach demonstrates the influence of magnetic flux density on the shear forces. Concerning heat transfers, we carried out experimental tests based on the use of a closed loop flow system to study forced convection of ferrofluids with imposed wall flux under magnetic field. This test bench allows us to understand the impact of several parameters related to the configuration of the applied magnetic field on the enhancement of convective heat transfers. To analyze why convective heat transfers are better under magnetic field, we carried out a system for measuring the thermal conductivity. This bench tests allows us to show the effect of temperature and magnetic flux density on this physical property. All these tests are paving the way for new research activities and to the ferrofluids applications in cooling systems.

Page generated in 0.0342 seconds