• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 651
  • 340
  • 128
  • 67
  • 43
  • 36
  • 32
  • 15
  • 13
  • 12
  • 12
  • 10
  • 6
  • 5
  • 4
  • Tagged with
  • 1585
  • 1585
  • 311
  • 304
  • 287
  • 178
  • 163
  • 147
  • 140
  • 140
  • 132
  • 120
  • 114
  • 113
  • 111
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Energy Efficient Cooperative Communications for Wireless Body Area Networks

Huang,Xigang 14 January 2011 (has links)
It is expected that Wireless Body Area Network (WBAN) will greatly improve the quality of our life because of its myriad applications for our human beings. However, one of the challenges is to design energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications have the advantage of spatial diversity to combat multipath fading, thus improving the link reliability and boosting energy efficiency. In this thesis, we investigate the energy efficient cooperative communications for WBAN. We first analyze the outage performance of three transmission schemes, namely direct transmission, single relay cooperation, and multi-relay cooperation. To minimize the energy consumption, we then study the problem of optimal power allocation with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Simulation results verify the accuracy of the analysis and demonstrate that: 1) power allocation making use of the posture information can reduce the energy consumption; 2) within a possible range of the channel quality in WBAN, cooperative communication is more energy efficient than direct transmission only when the path loss between the transmission pair is higher than a threshold; and 3) for most of the typical channel quality due to the fixed transceiver locations on human body, cooperative communication is effective in reducing energy consumption.
122

Development of a Design-Phase Assessment Tool for Double Façades in Retrofit Applications

Vance, Emily January 2013 (has links)
Much of the existing commercial building stock is aging and will be in need of upgrades now or within the next twenty years. Typically, enclosure retrofits consist of adding insulation to the exterior or interior of the existing façade. In this thesis, an alternative solution is examined, whereby a glass façade is added to the exterior of the existing building, forming a double façade. For historic buildings, this could preserve and protect the existing façade without completely covering it up. For outdated buildings, this could modernize the existing façade, giving it the all-glazed appearance that is currently so popular among architects. Regardless of the retrofit motive, it is important to be able to quantitatively compare retrofit solutions to make informed design decisions. As such, building simulation can be an important design tool. At present, there is no available simulation tool that can easily and accurately model a double façade; therefore, a double façade (DoFa) model was developed to fill this gap. A spreadsheet-based, lumped model was created and validated using current complex fenestration models and limited experimental data. Further experimental data is required to validate all aspects of the model. Results showed that the DoFa model can achieve accurate results; however, further development is needed to predict optical properties of venetian blinds and convective coefficients for natural airflow in double façade cavities. The model was used to compare double façades to traditional glazing systems. Results indicated that double façades can perform comparably to double glazing with outdoor shading in summer, and triple glazing in winter. However, the results are only valid for the tested glazing systems. In a second application, the DoFa model was modified to simulate an entire enclosure to compare a double façade retrofit to more traditional retrofit strategies. Results suggested that a double façade provides a good improvement in winter performance, though summer overheating is a concern. For the case study examined, a double façade would have performed better than the chosen retrofit of replacing the windows with double glazing and indoor shading, without insulating the opaque components. The DoFa model can be very useful in creating double façade preliminary design and operation strategies. At present, the DoFa model is an instantaneous, stand-alone tool. Further development is needed to pair the DoFa model with whole building energy simulations.
123

Communications in Wireless Sensor Networks: Compression, Energy Efficiency and Secrecy

Barceló Lladó, Joan Enric 05 October 2012 (has links)
Les xarxes de sensors sense fils (WSNs) han esdevingut un dels sistemes de comunicació amb més projecció d'aquesta dècada. Abasten una àmplia varietat d’aplicacions tals com la monitorització del medi ambient, la predicció de desastres naturals, en medicina, en transport, posicionament en interiors, i tasques militars. Els nodes que composen la xarxa, són típicament de baix cost, cosa que atorga una sèrie de limitacions en termes d’energia, velocitat de càlcul i d’ample de banda. Amb els avenços de les comunicacions sense fils i la creixent demanda de noves i més complexes aplicacions, les WSNs s’han d’optimitzar per tal de minimitzar aquestes limitacions. Aquesta tesi proposa un conjunt de tècniques que proporcionen a una WSN les següents característiques: 1. Implementació distribuïda sense necessitat de senyalització entre nodes sensors. 2. Comunicacions energèticament eficients. 3. Poca complexitat als nodes sensors. 4. Empra pocs recursos (temps, ample de banda, etc.) 5. Presenta un error quadràtic mig baix en reconstrucció al receptor. 6. Comunicacions secretes a capa física. Primer, s’estudia la transmissió seqüencial de mostreig reduït. Aquesta tècnica permet la disminució del nombre de transmissions i, per tant, reduir la despesa energètica associada a la comunicació a la xarxa. En particular, s’estudia el rendiment dels codificadors determinístics, probabilístics i condicionals de mostreig reduït per senyals autoregressius. S’obtenen expressions tancades de l’error quadràtic mig pel cas de mostreig reduït determinístic i probabilístic, mentre que pel cas condicional es deriven aproximacions ajustades. A continuació, s’analitza la compressió de la informació per WSNs grans. Pel cas on els paràmetres de correlació del senyal són desconeguts a priori, es proposen dos estimadors millorats: i) un per la predicció emprant el filtre de Wiener i ii) un per l’error quadràtic mig obtingut. Ambdós estimadors s’empren pels dos passos claus de l’algorisme de codificació distribuïda de canal. Aquests estimadors milloren notablement el rendiment de l’algorisme en comparació amb els estimadors de mostres clàssics, especialment quan la dimensió del vector d’observacions és comparable en magnitud amb el nombre de mostres usades a la fase d’entrenament de l’algorisme. Posteriorment, es proposa un esquema de comunicació distribuïda i energèticament eficient anomenat Amplify-and-Forward Compressed Sensing. Aquest esquema es basa en la tècnica de sensat comprimit i aprofita la correlació existent al senyal rebut per tal de reduir tant el nombre de recursos emprats com les despeses energètiques del sistema. Específicament, el sistema es dissenya seguint una funció de cost que controla el compromís existent entre error quadràtic i consum energètic de la xarxa. Per aconseguir aquest disseny, es deriva un model simple que aproxima el rendiment de l’esquema proposat en termes d’error quadràtic mig. A més, es contribueix a la teoria de sensat comprimit amb una nova i més ajustada relació entre el mínim nombre de mesures necessàries donades unes determinades propietats del senyal. Finalment, s’estudia l’esquema proposat Amplify-and-Forward Compressed Sensing des d’un punt de vista de secretisme a capa física. Es demostra que aquest esquema assoleix secretisme perfecte sota la presència d’un o d’un grup reduït d’espies, mentre que per un nombre més gran, és possible deteriorar notablement les seves capacitats d’espionatge gràcies a una tècnica proposta especialment dissenyada per introduir un extra d’incertesa solament a l’estimació dels espies. / Wireless Sensor Networks (WSNs) have emerged as one of the most promising wireless communication systems in the last decade. They can be used in a wide variety of applications such as environmental monitoring, natural disaster prediction, healthcare, transportation, indoor positioning, and military tasks. The cost and the complexity of the nodes within a WSN are typically low, which results in constraints such as energy limitation, low computational speed, and reduced communication bandwidth. With the advances in wireless communications and the growing demand of new and more complex applications, WSNs must be optimized in order to overcome their intrinsic limitations in terms of complexity and power. In this dissertation, and according to these constraints, we propose a set of techniques that provide to a WSN the following interesting features: 1. Distributed operation without the need of signaling among sensing nodes. 2. Energy-efficient communications. 3. Low complexity at the sensing nodes. 4. Low resource (i.e., bandwidth, time, etc.) utilization. 5. Low distortion level at the receiver. 6. Secret communications at the physical layer. First, we study the zero-delay downsampling transmission. This technique allows the system to reduce the number of transmissions and hence decrease the total energy spent. In particular, we study the performance of deterministic, probabilistic and conditional downsampling encoding-decoding pairs for the case of the autoregressive signal model. We obtain closed form expressions for the quadratic error of the deterministic and probabilistic encoder-decoders, while accurate approximations are derived for the quadratic error of the conditional downsampling schemes. Second, we analyze data compression applied to large WSNs. For the realistic case where the correlation parameters are not known a priori, we obtain two enhanced correlation estimators: i) one for the linear Wiener filter vector and ii) one for the achieved mean square error. Both estimators are employed in the two key steps of the distributed source coding algorithm. These estimators notably improve the performance of the algorithm in comparison to the application of classical sample estimators, specially when the dimension of the observation vector is comparable in magnitude to the number of samples used in the training phase. Then, we propose a distributed and energy-efficient communication scheme named Amplify-and-Forward Compressed Sensing. This scheme is based on compressed sensing and exploits the correlation present in the signal in order to reduce both the resource utilization and the energy consumption. More specifically, the system is designed according to a cost function that controls the trade-off between the quadratic error in the reconstruction and the energy consumption of the network. In order to aid the system design, a simple model that accurately approximates the performance of the proposed scheme in terms of the quadratic error has been derived. Furthermore, we contribute to the compressed sensing theory with a tighter relationship between the minimum number of measurements that are required for a given network dimension and the sparsity level of the transmitted signal. Finally, the proposed Amplify-and-Forward Compressed Sensing scheme is also studied in terms of secrecy and wiretap distortion at the physical layer. It is shown that the proposed scheme is perfectly secret in the presence of one or even a small group of eavesdroppers whereas for a larger eavesdropping set, it is still possible to notably deteriorate its espionage capabilities thanks to a proposed technique specifically designed to introduce extra uncertainty only in the channel estimation of the eavesdroppers.
124

The measured energy efficiency and thermal environment of a UK house retrofitted with internal wall insulation

Tink, Victoria J. January 2018 (has links)
Approximately 30% of the UK s housing stock is comprised of older, solid wall buildings. Solid walls have no cavity and were built without insulation; therefore these buildings have high heat loss, can be uncomfortable for occupants throughout the winter and require an above-average amount of energy to heat. Solid wall buildings can be made more energy efficient by retrofitting internal wall insulation (IWI). However, there is little empirical evidence on how much energy can be saved by insulating solid wall buildings and there are concerns that internal wall insulation could lead to overheating in the summer. This thesis reports measured results obtained from a unique facility comprised of a matched pair of unoccupied, solid wall, semi-detached houses. In the winter of 2015 one house of the pair was fitted with internal wall insulation then both houses had their thermal performance measured to see how differently they behaved. Measuring the thermal performance was the process of measuring the wall U-values, the whole house heat transfer coefficient and the whole house airtightness of the original and insulated houses. Both houses were then monitored in the winter of 2015, monitoring was the process of measuring the houses energy demand while using synthetic occupancy to create normal occupancy conditions. In the summer of 2015 indoor temperatures were monitored in the houses to assess overheating. The monitoring was done firstly to see how differently an insulated and an uninsulated house perform under normal operating conditions: with the blinds open through the day and the windows closed. Secondly, a mitigation strategy was applied to reduce high indoor operative temperatures in the houses, which involved closing the blinds in the day to reduce solar gains and opening the windows at night to purge warm air from the houses. The original solid walls were measured to have U-values of 1.72 W/m2K, while with internal wall insulation the walls had U-values of 0.21 W/m2K, a reduction of 88%. The house without IWI had a heat transfer coefficient of 238 W/K; this was reduced by 39% to 144 W/K by installing IWI. The monitored data from winter was extrapolated into yearly energy demand; the internally insulated house used 52% less gas than before retrofit. The measured U-values, whole house heat loss and energy demand were all compared to those produced from RdSAP models. The house was found to be more energy efficient than expected in its original state and to continue to use less energy than modelled once insulated. This has important implications for potential carbon savings and calculating pay-back times for retrofit measures. In summer, operative temperatures in the living room and main bedroom were observed to be higher, by 2.2 oC and 1.5 oC respectively, in the internally insulated house in comparison to the uninsulated house. Both of these rooms overheated according to CIBSE TM52 criteria; however the tests were conducted during an exceptionally warm period of weather. With the simple mitigation strategy applied the indoor operative temperature in the internally insulated house was reduced to a similar level as observed in the uninsulated house. This demonstrates that any increased overheating risk due to the installation of internal wall insulation can be mitigated through the use of simple, low cost mitigation measures. This research contributes field-measured evidence gathered under realistic controlled conditions to show that internal wall insulation can significantly reduce the energy demand of a solid wall house; this in turn can reduce greenhouse gas emissions and could help alleviate fuel poverty. Further to this it has been demonstrated that in this archetype and location IWI would cause overheating only in unusually hot weather and that indoor temperatures can be reduced to those found in an uninsulated house through the use of a simple and low cost mitigation strategy. It is concluded that IWI can provide a comfortable indoor environment, and that overheating should not be considered a barrier to the uptake of IWI in the UK.
125

Energy-aware load balancing approaches to improve energy efficiency on HPC systems / Abordagens de balanceamento de carga ciente de energia para melhorar a eficiência energética em sistemas HPC

Padoin, Edson Luiz January 2016 (has links)
Os atuais sistemas de HPC tem realizado simulações mais complexas possíveis, produzindo benefícios para diversas áreas de pesquisa. Para atender à crescente demanda de processamento dessas simulações, novos equipamentos estão sendo projetados, visando à escala exaflops. Um grande desafio para a construção destes sistemas é a potência que eles vão demandar, onde perspectivas atuais alcançam GigaWatts. Para resolver este problema, esta tese apresenta uma abordagem para aumentar a eficiência energética usando recursos de HPC, objetivando reduzir os efeitos do desequilíbrio de carga e economizar energia. Nós desenvolvemos uma estratégia baseada no consumo de energia, chamada ENERGYLB, que considera características da plataforma, irregularidade e dinamicidade de carga das aplicações para melhorar a eficiência energética. Nossa estratégia leva em conta carga computacional atual e a frequência de clock dos cores, para decidir entre chamar uma estratégia de balanceamento de carga que reduz o desequilíbrio de carga migrando tarefas, ou usar técnicas de DVFS par ajustar as frequências de clock dos cores de acordo com suas cargas computacionais ponderadas. Como as diferentes arquiteturas de processador podem apresentam dois níveis de granularidade de DVFS, DVFS-por-chip ou DVFS-por-core, nós criamos dois diferentes algoritmos para a nossa estratégia. O primeiro, FG-ENERGYLB, permite um controle fino da frequência dos cores em sistemas que possuem algumas dezenas de cores e implementam DVFS-por-core. Por outro lado, CG-ENERGYLB é adequado para plataformas de HPC composto de vários processadores multicore que não permitem tal refinado controle, ou seja, que só executam DVFS-por-chip. Ambas as abordagens exploram desbalanceamentos residuais em aplicações interativas e combinam balanceamento de carga dinâmico com técnicas de DVFS. Assim, eles reduzem a frequência de clock dos cores com menor carga computacional os quais apresentam algum desequilíbrio residual mesmo após as tarefas serem remapeadas. Nós avaliamos a aplicabilidade das nossas abordagens utilizando o ambiente de programação paralela CHARM++ sobre benchmarks e aplicações reais. Resultados experimentais presentaram melhorias no consumo de energia e na demanda potência sobre algoritmos do estado-da-arte. A economia de energia com ENERGYLB usado sozinho foi de até 25% com nosso algoritmo FG-ENERGYLB, e de até 27% com nosso algoritmo CG-ENERGYLB. No entanto, os desequilíbrios residuais ainda estavam presentes após as serem tarefas remapeadas. Neste caso, quando as nossas abordagens foram empregadas em conjunto com outros balanceadores de carga, uma melhoria na economia de energia de até 56% é obtida com FG-ENERGYLB e de até 36% com CG-ENERGYLB. Estas economias foram obtidas através da exploração do desbalanceamento residual em aplicações interativas. Combinando balanceamento de carga dinâmico com DVFS nossa estratégia é capaz de reduzir a demanda de potência média dos sistemas paralelos, reduzir a migração de tarefas entre os recursos disponíveis, e manter o custo de balanceamento de carga baixo. / Current HPC systems have made more complex simulations feasible, yielding benefits to several research areas. To meet the increasing processing demands of these simulations, new equipment is being designed, aiming at the exaflops scale. A major challenge for building these systems is the power that they will require, which current perspectives reach the GigaWatts. To address this problem, this thesis presents an approach to increase the energy efficiency using of HPC resources, aiming to reduce the effects of load imbalance to save energy. We developed an energy-aware strategy, called ENERGYLB, which considers platform characteristics, and the load irregularity and dynamicity of the applications to improve the energy efficiency. Our strategy takes into account the current computational load and clock frequency, to decide whether to call a load balancing strategy that reduces load imbalance by migrating tasks, or use Dynamic Voltage and Frequency Scaling (DVFS) technique to adjust the clock frequencies of the cores according to their weighted loads. As different processor architectures can feature two levels of DVFS granularity, per-chip DVFS or per-core DVFS, we created two different algorithms for our strategy. The first one, FG-ENERGYLB, allows a fine control of the clock frequency of cores in systems that have few tens of cores and feature per-core DVFS control. On the other hand, CGENERGYLB is suitable for HPC platforms composed of several multicore processors that do not allow such a fine-grained control, i.e., that only perform per-chip DVFS. Both approaches exploit residual imbalances on iterative applications and combine dynamic load balancing with DVFS techniques. Thus, they reduce the clock frequency of underloaded computing cores, which experience some residual imbalance even after tasks are remapped. We evaluate the applicability of our approaches using the CHARM++ parallel programming system over benchmarks and real world applications. Experimental results present improvements in energy consumption and power demand over state-of-the-art algorithms. The energy savings with ENERGYLB used alone were up to 25%with our FG-ENERGYLB algorithm, and up to 27%with our CG-ENERGYLB algorithm. Nevertheless, residual imbalances were still present after tasks were remapped. In this case, when our approaches were employed together with these load balancers, an improvement in energy savings of up to 56% is achieved with FG-ENERGYLB and up to 36% with CG-ENERGYLB. These savings were obtained by exploiting residual imbalances on iterative applications. By combining dynamic load balancing with the DVFS technique, our approach is able to reduce the average power demand of parallel systems, reduce the task migration among the available resources, and keep load balancing overheads low.
126

Assessing the effect of new control and payment methods on heating energy consumption and occupant behaviour in Chinese dwellings

Meng, Yao January 2017 (has links)
Energy demand reduction has become a global issue involving all countries, including China. As major energy consumers in today s society, the need for buildings to be built and operated more energy efficiently is well recognized. In 1995, the national standard on building energy efficiency in China (JGJ 26-95) was refined and updated to become the new residential Buildings standard (JGJ 26-2010) published in 2010. In the new version, many changes have been made to support the construction of more energy efficient buildings in China. For example, in the new standard, all buildings are highly recommended to install personal control on the heating system, such as by Thermostatic Radiator Valves (TRVs), together with pay for what you use tariffs. Previous practice comprised uncontrolled heating with payment based on floor area. In order to reduce building energy consumption, Chinese government has revised the Chinese building design standard. In the new guide the use of individual room temperature control is highly recommended for new and refurbishment buildings. However, evidence to quantify the extent to which this improvement impact upon on the building energy consumption is currently lacking. This thesis evaluates the impact of updated building design standards on thermal conditions and energy consumption in Chinese residential buildings. In order to evaluate the impact on the building energy consumption, two types of residential buildings have been chosen, one complying with the old Chinese building design standard, while the other complies with the new standard. The study was carried out in seven apartments in each type of building, a total of fourteen apartments and comprised with a longitudinal monitoring of indoor air temperature, outdoor air temperature, window position and energy consumption of each apartment. The impact of the new design standard has been evaluated in relation to a number of aspects, that include building construction, indoor thermal environment, occupant behaviour, thermal comfort and building energy consumption. It is concluded that updating the building design standard has had a positive influence on the building conditions and energy consumption. Furthermore, a thermal comfort survey was carried out in both new and old apartments according to updated standards. The results show that the Predicted Mean Vote (PMV) model has a efficiently adequate predictor of occupants thermal comfort in both type of apartments. Thereby allowing confirmation that the new control refine did not compromise on thermal comfort. The percentage of acceptable of occupants is higher in new apartments compared with the old apartments.
127

Analysis of an Existing Coal Fired Power Generation Facility with Recommendations for Efficiency and Production Improvement

Achelpohl, Scott Alan 01 December 2010 (has links)
This study examined the Lake of Egypt Power Plant operated by Southern Illinois Power Cooperative located on the Lake of Egypt south of Marion, IL. The facility has a 173 MW rated turbine operating on a pulverized coal cyclone boiler and three 33 MW rated turbines operating on an oversized circulating fluidized bed boiler with 120 MW capacity. The first area examined was reduction of auxiliary power consumption possible with the addition of variable frequency drives to the forced draft fan and booster fan motors. Included in this examination was an analysis of the economic and environmental impact of such a reduction. From the analysis an annual savings of 24.4 GWh of electricity is possible. The second area examined was the generation capacity lost due to condenser fouling and the possible reduction in facility emissions with altered condenser treatment. From the analysis an additional 3.0 MW of capacity facility wide is possible or a reduction steam production of 1.5% for each boiler.
128

Desenvolvimento de carenagem para miniveículo visando eficiência energética com base na biônica

Rosa, Leonardo Cardoso January 2013 (has links)
Este trabalho tem como objetivo gerar subsídios para futuros estudos que busquem desenvolver carenagens de miniveículos com eficiência energética. Para tanto, são realizados estudos de diversas técnicas que podem influenciar no melhor desempenho com redução de consumo considerando menor perda de energia no ciclo de vida do produto usando os princípios da Ecologia. A partir da fundamentação teórica, foi desenvolvida uma carenagem aplicando a metodologia de Biônica baseada na forma do Límulus que é o ser vivo mais antigo do planeta. Foram utilizados recursos de tecnologia computacional para captura de seu formato, e utilização de softwares paramétricas para realização de análises de elementos finitos testando a eficiência de sua forma. Posteriormente foi proposto um desenho com uso de acessórios aerodinâmicos para verificação de seus comportamentos, que atendeu aos requisitos do projeto, adequando às questões de ergonomia e legislação nacional de trânsito. Por fim, foi construído um protótipo em escala real para realização de testes práticos e demonstração de técnicas para sua execução. Os resultados obtidos servirão de referência como método de desenvolvimento para novos miniveículos que se propõem a ter eficiência energética. / This study aims to generate subsidies for future research about the development of car body for mini vehicle with energy efficiency. For such purpose, diverse techniques that may influence on better performance with consumption reduction were studied, considering lower loss of energy during the life cycle of the product using the principies of Ecology. Based on academic background, a car body was developed applying Bionics methodology, more specifically the shape of Limulus, which is the oldest live being on the planet. Resources from computational technology were used to capture its format, as well as parametric software for finite element analysis testing the efficiency of its shape. Subsequently a design was proposed using aerodynamics accessories to verify its behavior, which met the requirements of the project, adapting to ergonomic issues and national traffic legislation. Lastly, a prototype was built in real scale for implementation of practical tests and technique demonstration. The results obtained can be used as a reference of development method for new mini vehicles with the purpose of having energy efficiency.
129

Energy aware management of 5G networks

Liu, Chang January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Balasubramaniam Natarajan / The number of wireless devices is predicted to skyrocket from about 5 billion in 2015 to 25 billion by 2020. Therefore, traffic volume demand is envisioned to explode in the very near future. The proposed fifth generation (5G) of mobile networks is expected to be a mixture of network components with different sizes, transmit powers, back-haul connections and radio access technologies. While there are many interesting problems within the 5G framework, we address the challenges of energy-related management in a heterogeneous 5G networks. Based on the 5G architecture, in this dissertation, we present some fundamental methodologies to analyze and improve the energy efficiency of 5G network components using mathematical tools from optimization, control theory and stochastic geometry. Specifically, the main contributions of this research include: • We design power-saving modes in small cells to maximize energy efficiency. We first derive performance metrics for heterogeneous cellular networks with sleep modes based on stochastic geometry. Then we quantify the energy efficiency and maximize it with quality-of-service constraint based on an analytical model. We also develop a simple sleep strategy to further improve the energy efficiency according to traffic conditions. • We conduct a techno-economic analysis of heterogeneous cellular networks powered by both on-grid electricity and renewable energy. We propose a scheme to minimize the electricity cost based on a real-time pricing model. • We provide a framework to uncover desirable system design parameters that offer the best gains in terms of ergodic capacity and average achievable throughput for device-to-device underlay cellular networks. We also suggest a two-phase scheme to optimize the ergodic capacity while minimizing the total power consumption. • We investigate the modeling and analysis of simultaneous information and energy transfer in Internet of things and evaluate both transmission outage probability and power outage probability. Then we try to balance the trade-off between the outage performances by careful design of the power splitting ratio. This research provides valuable insights related to the trade-offs between energy-conservation and system performance in 5G networks. Theoretical and simulation results help verify the performance of the proposed algorithms.
130

Developing New Methods for Analyzing Urban Energy Use in Buildings: Historic Turnover, Spatial Patterns, and Future Forecasting

January 2016 (has links)
abstract: Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building stocks are quasi-permanent infrastructures which have enduring influence on urban energy consumption, and research is needed to understand: 1) how development patterns constrain energy use decisions and 2) how cities can achieve energy and environmental goals given the constraints of the stock. This requires a thorough evaluation of both the growth of the stock and as well as the spatial distribution of use throughout the city. In this dissertation, a case study in Los Angeles County, California (LAC) is used to quantify urban growth, forecast future energy use under climate change, and to make recommendations for mitigating energy consumption increases. A reproducible methodological framework is included for application to other urban areas. In LAC, residential electricity demand could increase as much as 55-68% between 2020 and 2060, and building technology lock-in has constricted the options for mitigating energy demand, as major changes to the building stock itself are not possible, as only a small portion of the stock is turned over every year. Aggressive and timely efficiency upgrades to residential appliances and building thermal shells can significantly offset the projected increases, potentially avoiding installation of new generation capacity, but regulations on new construction will likely be ineffectual due to the long residence time of the stock (60+ years and increasing). These findings can be extrapolated to other U.S. cities where the majority of urban expansion has already occurred, such as the older cities on the eastern coast. U.S. population is projected to increase 40% by 2060, with growth occurring in the warmer southern and western regions. In these growing cities, improving new construction buildings can help offset electricity demand increases before the city reaches the lock-in phase. / Dissertation/Thesis / Doctoral Dissertation Civil and Environmental Engineering 2016

Page generated in 0.072 seconds