Spelling suggestions: "subject:"[een] ENERGY EFFICIENCY"" "subject:"[enn] ENERGY EFFICIENCY""
151 |
Efficient Bandwidth Management for Ethernet Passive Optical NetworksElrasad, Amr 15 May 2016 (has links)
The increasing bandwidth demands in access networks motivates network operators, networking devices manufacturers, and standardization institutions to search for new approaches for access networks. These approaches should support higher bandwidth, longer distance between end user and network operator, and less energy consumption.
Ethernet Passive Optical Network (EPON) is a favorable choice for broadband access networks. EPONs support transmission rates up to 10 Gbps. EPONs also support distance between end users and central office up to 20 Km. Moreover, optical networks have the least energy consumption among all types of networks.
In this dissertation, we focus on reducing delay and saving energy in EPONs. Reducing delay is essential for delay-sensitive traffic, while minimizing energy consumption is an environmental necessity and also reduces the network operating costs. We identify five challenges, namely excess bandwidth allocation, frame delineation, congestion resolution, large round trip time delay in long-reach EPONs (LR-EPONs), and energy saving. We provide a Dynamic Bandwidth Allocation (DBA) approach for each challenge. We also propose a novel scheme that combines the features of the proposed approaches in one highly performing scheme.
Our approach is to design novel DBA protocols that can further reduce the delay and be simultaneously simple and fair. We also present a dynamic bandwidth allocation scheme for Green EPONs taking into consideration maximizing energy saving under target delay constraints.
Regarding excess bandwidth allocation, we develop an effective DBA scheme called
Delayed Excess Scheduling (DES). DES achieves significant delay and jitter reduction and is more suitable for industrial deployment due to its simplicity. Utilizing DES in hybrid TDM/WDM EPONs (TWDM-EPONs) is also investigated. We also study eliminating the wasted bandwidth due to frame delineation. We develop an interactive DBA scheme, Efficient Grant Sizing Interleaved Polling (EGSIP), to compensate the unutilized bandwidth due to frame delineation. Our solution achieves delay reduction ratio up to 90% at high load. We also develop a Congestion Aware Limited Time (CALT) DBA scheme to detect and resolve temporary congestion in EPONs. CALT smartly adapts the optical networking unit (ONU) maximum transmission window according to the detected congestion level. Numerical results show that CALT is more robust at high load compared to other related published schemes.
Regarding LR-EPONs, the main concern is large round trip delay mitigation. We address two problems, namely bandwidth over-granting in Multi-Thread Polling (MTP) and on-the-fly void filling. We combine, with some modifications, EGSIP and DES to resolve bandwidth over-granting in MTP. We also manage to adaptively tune MTP active running threads along with the offered load. Regarding on-the-fly void filling, Our approach, Parallel Void Thread (PVT), achieves large delay reduction for delay-sensitive traffic. PVT is designed as a plus function to DBA and can be combined with almost all DBA schemes proposed before. The powerful feature of our proposed solutions is integrability. We integrate our solutions together and form a multi-feature, robust, fairly simple, and well performing DBA scheme over LR-TWDM-EPONs.
Our final contribution is about energy saving under target delay constraints. We tackle the problem of downstream based sleep time sizing and scheduling under required delay constraints. Simulation results show that our approach adheres to delay constraints and achieves almost ideal energy saving ratio at the same time.
|
152 |
Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariffChatterjee, Arnab January 2014 (has links)
With the growing concerns about energy shortage and demand supply imbalance, demand side
management (DSM) activities has found its way into the mining industry. This study analyzes
the potential to save energy and energy-costs in underground mine ventilation networks, by
application of DSM techniques. Energy saving is achieved by optimally adjusting the speed
of the main fan to match the time-varying flow demand in the network, which is known as
ventilation on demand (VOD). Further cost saving is achieved by shifting load to off-peak
or standard times according to a time of use (TOU) tariff, i.e. finding the optimal mining
schedule.
The network is modelled using graph theory and Kirchhoff’s laws; which is used to form a
non-linear, constrained, optimization problem. The objective of this problem is formulated
to minimize the energy cost; and hence it is directly given as a function of the fan speed,
which is the control variable. As such, the operating point is found for every change in the
fan speed, by incorporating the fan laws and the system curve.
The problem is solved using the fmincon solver in Matlab’s optimization toolbox. The
model is analyzed for different scenarios, including varying the flow rate requirements and tariff structure. Although the results are preliminary and very case specific, the study suggests
that significant energy and energy-cost saving can be achieved in a financially viable
manner. / Dissertation (MEng)--University of Pretoria, 2014. / tm2015 / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
|
153 |
Energy-Efficient Mobile Device-Assisted Schemes In Wireless Sensor NetworksWu, Qiyue 06 May 2020 (has links)
Recently, wireless sensor networks (WSNs), consisted of battery-powered sensor nodes, are widely adopted by various civilian/military applications for implementing real-time monitoring or long-term surveillance tasks. One of the critical issues of WSNs is energy efficiency. Due to the limited battery capacity, the network lifetime and performance of WSNs are constrained. Also, once the sensor is deployed into a risky/remote environment, the replacement of its battery is hard. Therefore, how to improve the energy efficiency of the WSN is a critical issue and has gained tremendous attention from researchers around the world.
To address this problem, by taking advantage of the emerging high-mobility devices (e.g., unmanned aerial vehicle (UAV)), we propose energy-efficient mobile device-assisted schemes in different-scale WSNs. Thanks to the rapid development of wireless techniques, two emerging approaches, i.e., data gathering technique and wireless charging technique, are beneficial to balance the workloads among all sensors or replenish energy to achieve the semi-permanent WSN. First, we design data gathering schemes using the mobile data collector. In order to meet the performance requirements of systems with different scales, our algorithms have two working modes: single- and multiple-data-collector scenarios. For the small-scale system, a single data collector is adopted to access and collect data from the deployed node, and we propose single mobile data collector-assisted (SDCA) data collection schemes for small-scale WSNs. For the large-scale system, multiple data collectors are utilized to gather sensed data from deployed nodes, and two-mode multiple mobile data collector-assisted (MDCA) data collection scheme is designed for balancing between the system energy consumption and the data forwarding latency. Second, the joint data collection and energy charging scheme is developed by adopting mobile chargers (MCs) as mobile devices that are responsible for energy charging and data collection simultaneously. For facing the different performance requirements of systems, a two-mode MC scheduling algorithm is presented. To evaluate our works, extensive simulation experiments are conducted on the OMNeT++ simulator. The results demonstrate that the proposed algorithms achieve better performance than the control group regarding system-wide energy efficiency, network lifetime and average end-to-end delay.
|
154 |
L'efficacité énergétique et le droit / Energy efficiency and the lawIlchev, Konstantin 08 December 2017 (has links)
L’Union européenne et les États membres doivent progresser de manière continue vers une société durable, intelligente, inclusive et à faible intensité de carbone. Vue sous le prisme de l’Union de l’énergie, l’efficacité énergétique serait à la base de la refonte socio-économique de l’Europe et poserait les jalons des nouveaux paradigmes socio-économiques, nécessairement transversaux. Encore faut-il que le domaine plurisectoriel de l’efficacité énergétique soit mis en œuvre dans un cadre réglementaire et normatif harmonisé, transparent et évolutif. Nous avons donc effectué une analyse sur la mise en œuvre de l’efficacité énergétique au niveau du droit européen et niveau du droit national français. Dans une première partie, nous avons constaté la singularité juridique de la notion d’efficacité énergétique qui réside dans sa genèse et ses rapports multiformes. Dans une seconde partie, nous avons démontré le caractère pluridisciplinaire de l’efficacité énergétique. En effet, nous avons pu constater que l’efficacité énergétique est intégrée en droit public et en droit privée. En somme, le concept d’efficacité énergétique matérialise l’apparition d’une nouvelle grille de lecture en droit, résidant dans une approche transversale afin de mieux tenir compte des interactions et des synergies entre les différents phénomènes socio-économiques contemporains allant de pair avec les progrès technologiques et l’innovation. / The European Union and its Member States shall continue to evolve towards a sustainable, intelligent, inclusive and low-carbon society. Energy efficiency would be the basis for the socio-economic redesign of Europe and would lay the groundwork for new, necessarily transverse socio-economic paradigms. The multi-sector domain of energy efficiency need to be fully implemented in a harmonized, transparent and evolving regulatory and normative framework. We therefore carried out an analysis of the implementation of energy efficiency at two levels: regional level (European law) and nation level (French law). Firstly, we have noted the legal singularity of energy efficiency, which lies in its genesis and its multiform relationships. Secondly, we have demonstrated the multidisciplinary nature of energy efficiency. Indeed, we have seen that energy efficiency is recognized in both public and private law. In sum, the concept of energy efficiency materializes the emergence of a new legal reading grid. The approach is transverse to account more accurately for the interactions and synergies between the various contemporary socio-economic phenomena, which go hand in hand with technological progress and innovation.
|
155 |
Právní nástroje energetické účinnosti / Legal instruments of energy efficiencyKudlík, Leoš January 2019 (has links)
Legal instruments of energy efficiency Abstract and key words The diploma thesis deals with energy efficiency as a unique source of energy. The subject of this thesis is to specify key legal instruments of energy efficiency, i.e. conceptual, administrative and economical instruments. The diploma thesis is divided into five chapters. In the introductory chapter, being called Energy Policy, there is a brief outline of the background of energy politics on both the international and EU level, including environmental protection. This introductory chapter also ranks the Czech Republic among countries with high energy performance. Energy efficiency is the opportunity to lower its energy performance. The second chapter, Legal Instruments of Energy Efficiency, defines legal instruments of energy efficiency as a part of environmental protection. This chapter is a general one; the instruments are concretized in the following chapters. In addition, this chapter focuses on the principle of sustainable development, as well as issues related to human factor, climate conditions and rebound effect. The third chapter, called Conceptual Instruments, provides further information relating to conceptual strategies of energy efficiency. For the EU conceptions, key directives are mentioned to regulate energy efficiency, namely the...
|
156 |
ANALYSIS OF THERMALLY CONNECTED RESIDENTIAL APPLIANCESStephen L. Caskey (5929559) 25 June 2020 (has links)
<div>With the United States being the world’s second largest consumer of primary energy, research into areas of significant consumption can provide large impacts in terms of the global energy consumption. Buildings account for 41% of U.S. total energy consumption with the residential sector making up a majority. Household appliances account for the second largest site energy consumption at 27%, after the HVAC system for the U.S. residential sector. Federal appliance standards have been instrumental in improving efficiencies but have been increasing aggressively to where it is unknown what suitable technologies can support this rate of increase. Thermally integrating residential appliances by leveraging waste heat recovery goes outside standards and has not been adequately explored by connecting all residential appliances. Limited studies exist focused only on single appliances connected to waste heat recovery or being thermally integrated. Preliminary modeling on waste heat availability from five major appliances, namely refrigerator-freezer, clothes dryer, clothes washer, dishwasher, and cooking oven was conducted. Conservative estimates predict the total amount of heat recovery to be around 2,000 kWh/year; clothes dryer - 137 kWh/year, clothes washer - 60 kWh/year, 1,500 kWh/year- refrigerator-freezer, 27 kWh/year – dishwasher, and 178 kWh/year – cooking oven. The cooking oven presents technical challenges coupled with safety concerns. The clothes dryer and refrigerator-freezer can deliver useful water temperatures and reduce compressor power consumption, up to 20%. The dishwasher has better opportunity as a heat sink to offset the internal heater, 0.17 kWh of electricity/cycle for heating wash water. The clothes washer drains large volumes of water available for heat recovery and can offset the impact of using high temperature washes with improved wash performance. </div><div>Modelica appliance models have been developed for four of these five appliances. The Modelica models capture individual use and the predictions of the RF and DW were compared against available experimental data. The individual models have been connected to a simple storage tank model to simulate the integrated appliance system. An integrated appliance prototype was designed and fabricated for the collection of experimental data. Comparisons made between the experimental data and the integrated appliance simulation results adjusted the modeling approach and improved agreement with collected data. After tuning, ideal modifications to each appliance are made and reflected in a new integrated model. A parametric study is conducted on ideal improved, thermally capable appliances under a 1-week schedule for two different tank sizes. For 300L and 150 L tank sizes, the appliance total energy for the week is roughly 30.5 kWh compared to a baseline appliance system with no thermal resource sharing at 33.8 kWh. At an electricity cost of $0.15/kWh, the cost savings for the integrated system is a little over $0.40/week. Furthermore, the savings is completely diminished when considering the required auxiliary power to support the exchange of heat between each appliance and storage tank. The impact of tank size should be explored further to identify a critical tank size where the system savings is no longer available. Accounting for all the domestic hot water needs of the home would generate an improved picture where integrated appliances have technical feasibility. </div><div><br></div>
|
157 |
Energy Efficiency Potential of Occupancy-Based Control of Energy Systems in an Office EnvironmentMattsson, Moa January 2020 (has links)
Energy efficiency of buildings is an important measure to obtain a reduction of emissions of greenhouse gases since the building sector currently emits 40% of the total emissions in the world. A modification of control systems within commercial buildings is shown in earlier research to have a possible energy saving. The conventional control is usually controlled by fixed schedules and might presumably result in unnecessary energy use, since it operates at full capacity during the set period. Thus, modification of such control systems in commercial buildings might have a significant energy efficiency potential. The aim was to investigate the overlooked effect of human behavior on buildings’ energy usage. The hypothesis was a significant energy saving could be achieved if control systems use occupancy-based (OB) control instead of a conventional control based on fixed schedules. Firstly, occupancy data acquired from motion sensors in offices in the natural science building at Umeå University was used to create average occupancy patterns. The occupancy patterns were used to create various schedules with different objectives while representing the average floor occupancy. Secondly, the created schedules were used in the building simulation program IDA ICE. The simulation program was used to investigate how the energy consumption changed if the control system was changed to operate as OB control. Lastly, the potential energy savings were calculated with values from the simulations. The results showed that an average energy saving of 14% was achievable if OB control was used instead of fixed-schedule control. It was also found that a potential energy saving largely depends on the behavior of the occupants. Depending on the occupancy pattern and intensity, a potential energy saving of 10% to 17% was obtained. The results also signify the importance of well-functioning sensors and accurate detection. Additionally, it was found that the summer months had less potential energy savings compared to the other months. The results show that human behavior can have a large effect on the energy consumption within a building. Thus, implementing occupancy information in control systems might yield a potential energy saving. The intensity of occupants’ affects the potential energy saving. It was found that a higher intensity yields a lower potential while a lower intensity yields a larger potential energy saving. An interesting theory regarding the sensors was found after studying the results. It was found that it might be possible to let six arbitrarily offices represent 40 offices in an office environment. An important measure when collecting personal occupancy information is to inform the occupants of the experiment, as to not have problems with perceived privacy. Including the occupants in the data-collecting project might yield a better understanding and thus better collaboration with the experiment.
|
158 |
Design of a net-zero energy community: WaalwijkSundaram, Smitha January 2013 (has links)
No description available.
|
159 |
Low-Power MAC design for M2M Communications in Cellular Networks: Protocols and AlgorithmsChen, Xiaohang January 2013 (has links)
Machine-to-Machine Communication (M2M) is the communications between wireless devices without human interventions. As a fundamental enabler of Internet of Things, M2M is growing fast and implemented in many areas. The number of M2M devices is expected to be extremely large in the future. In most cases they are battery driven and positioned in broad areas so that it would be costly to frequently replace or charge their batteries. To save the cost of maintaining M2M systems in the long term, energy consumption needs to be minimized so that battery lives of M2M devices can be maximized, which motivates the design of a lowpower MAC protocol in this thesis. The related works have indicated that idle listening and collisions are the main sources of power waste. In the proposed low-power MAC protocol design, various methods that would help preserving energy are considered. We first analyze the performance of three conventional protocols, TDMA, CSMA, and reservation-based protocol. The packet delay, energy consumption, and system throughput performances of these protocols are evaluated with both theoretical analysis and numerical simulations. Our results show that CSMA has better packet delay and throughput performances while static and dynamic TDMAs are more energy efficient. Furthermore, we design a hybrid energy-efficient MAC protocol for M2M communications. This solution not only improves existing protocols, but also takes the advantage of clustering in cellular networks to save energy. We show by simulation results that the proposed MAC protocol outperforms others in energy saving, without sacrificing much on delay or throughput. This is because with clustering, transmission power of remote nodes can be greatly reduced after they become members of clusters. With the proposed MAC protocol, the lifetimes of both individual nodes and the whole M2M network are significantly extended.
|
160 |
Energy audit of an industrial facility,Hagby waste management plantKunytsia, Maksym January 2016 (has links)
In order to answer modern challenges, which come from increasing needs in energy forprivate persons and industries as well as in order to decrease negative environmentalimpacts, caused by the processes of energy generation, it is important to constantly searchfor untapped energy efficiency potential. Moreover, nowadays, energy efficiency hasbecome one of the prerequisites of successful market competitiveness for any type ofindustry on local and global levels.An energy audit is an instrument, which can be used for understanding how the energy isused and identify possible energy-saving opportunities. It can be applied to a facility as awhole, as well as individually to equipment, system(s) or process(es). Moreover, energysaving measures can be both cross-cutting and sector-specific.The purpose of this project was to conduct a detailed energy audit of the Hagby wasterecycling plant and to identify beneficial energy saving opportunities from economic,environmental and social perspectives.In the frames of a preliminary energy audit 10 focus areas for further analysis wereidentified. For every area a baseline assessment of the current energy performance wasconducted, possible energy management opportunities were identified and evaluated aswell as results of each analysis were summarized. According to the results of the study, with the implementation of the suggestions, whichrequire no, low or medium investments it is possible to save 3,2% of the energy per year,which corresponds to 76 846 kWh. Energy consumption can further be decreased byimplementing measures, which need high initial financial investment. In that case totalsavings will be 468 846 kWh or 19,4% of total annual energy consumption. Additionalenergy might be saved just by introducing energy housekeeping measures. Finally,implementation of all the proposed EMO can bring 14,46 tons of 2 CO savings annually.Additional benefits of implementing the energy saving opportunities come from decreasingenvironmental impacts, improving working conditions of the plant employees and higherenergy security at the plant.The results of the energy audit can be a solid base for establishing an energy managementprogram at the plant, which will include performance targets, required resources and aclear procedure of realization of improvements. However, since some of the calculations inthe current study are based on various assumptions, after the company forms the energymanagement program, it is necessary to invite experts from industry in order to giveaccurate calculations for each of the focus areas.
|
Page generated in 0.0456 seconds