• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 48
  • 46
  • 32
  • 26
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 489
  • 489
  • 110
  • 99
  • 87
  • 74
  • 71
  • 65
  • 59
  • 56
  • 51
  • 49
  • 47
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

On the Downlink Operation and Architecture Optimization of Multi-User VLC Systems

Abdelhady, Amr Mohamed Abdelaziz 11 1900 (has links)
The limited overcrowded radio frequency spectrum compelled researchers to ex plore higher frequency ranges for wireless transmission. In recent decades, visible light communications (VLC) have gained lots of research attention thanks to the abundant bandwidth and the existing lighting infrastructure they offer. Throughout this dissertation, we study the downlink of multi-user VLC systems with the aim of operation and architecture enhancement. In this context, we accommodate the chal lenges imposed by the visible light nature such as illumination requirements and mod ulation constraints. On the operation optimization front, we investigate three VLC setups: indoor single cell, outdoor energy harvesting enabled single cell, and indoor energy harvesting enabled multi-cell VLC systems. We formulate, and provide low complexity solutions to, resource allocation problems for each setup while accounting for scenario-tailored system objectives and quality of service requirements. For the first setup, the temporal average illumination is maintained fixed while maximizing the system SE and dynamic time-division-multiple-access is employed to serve users in an interference free setup. As for the second setup, owing to the favored joint lighting and SE maximization, we solve a multi-objective optimization problem accounting for both objectives. We found that the severity of the illumination - communications tradeoff increases as the available system power budget decreases or the minimum rate requirements get tighter. In the third setup, transmitters average currents and receivers fields of view tuning strategies are developed to maximize both spectral ef ficiency and energy harvesting objectives in an interference limited scenario, where spatial illumination uniformity is required. It is found that receivers fields of view tuning is substantial to performance enhancement in dense deployments. On the architecture optimization front, we propose two intelligent reflecting surfaces-aided VLC systems and derive their power density distribution in the receiver plane. In addition, we prove their power concentration capability and quantify their relative gain with respect to one another and with respect to the reflector-free VLC systems enjoying direct line of sight. Finally, we study the channel impulse response of the proposed reflecting systems and quantify the incurred delay spread through exact ex pression, simplified bounds and asymptotic expressions when the number of reflecting elements grows unboundedly.
212

Wide-Range Highly-Efficient Wireless Power Receivers for Implantable Biomedical Sensors

Ouda, Mahmoud 11 1900 (has links)
Wireless power transfer (WPT) is the key enabler for a myriad of applications, from low-power RFIDs, and wireless sensors, to wirelessly charged electric vehicles, and even massive power transmission from space solar cells. One of the major challenges in designing implantable biomedical devices is the size and lifetime of the battery. Thus, replacing the battery with a miniaturized wireless power receiver (WPRx) facilitates designing sustainable biomedical implants in smaller volumes for sentient medical applications. In the first part of this dissertation, we propose a miniaturized, fully integrated, wirelessly powered implantable sensor with on-chip antenna, designed and implemented in a standard 0.18μm CMOS process. As a batteryless device, it can be implanted once inside the body with no need for further invasive surgeries to replace batteries. The proposed single-chip solution is designed for intraocular pressure monitoring (IOPM), and can serve as a sustainable platform for implantable devices or IoT nodes. A custom setup is developed to test the chip in a saline solution with electrical properties similar to those of the aqueous humor of the eye. The proposed chip, in this eye-like setup, is wirelessly charged to 1V from a 5W transmitter 3cm away from the chip. In the second part, we propose a self-biased, differential rectifier with enhanced efficiency over an extended range of input power. A prototype is designed for the medical implant communication service (MICS) band at 433MHz. It demonstrates an efficiency improvement of more than 40% in the rectifier power conversion efficiency (PCE) and a dynamic range extension of more than 50% relative to the conventional cross-coupled rectifier. A sensitivity of -15.2dBm input power for 1V output voltage and a peak PCE of 65% are achieved for a 50k load. In the third part, we propose a wide-range, differential RF-to-DC power converter using an adaptive, self-biasing technique. The proposed architecture doubles the dynamic range of conventional rectifiers. Unlike the continuously self-biased rectifier proposed in the second part, this adaptive rectifier extends the dynamic range while maintaining both the high PCE peak and the sensitivity advantage of the conventional cross-coupled scheme, and can operates in the GHz range.
213

Nositelná rektifikační anténa pro RF sklízení energie / Wearable rectifying antenna for RF energy harvesting

Kokolia, Martin January 2016 (has links)
The aim of this thesis is to design and rectena that would be able to integrate into a cloth thanks to use of textile substrate. The first part deals with the possibilities of using various communication channels and services for maximizing the useable power. Attention is focused mainly on the use of textile materials for implementing microstrip circuits. It is made valorization of all the typical characteristics and problems using different fabrics as a microwave substrate and the possibilities of realization of conductive structures of microwave patch antenna and microstrip circuits. At the second part are identified parameters and constraints used for the design of the overall device with a rectifying antenna, which will be after the verification of the function in real implementation used for the final concept using textile structures. The design is verified by simulations by CST Microwave Studio and Microwave Designer. The initial design is being gradually extended by other concepts, the use of other materials and technologies. Several design are made, their properties evaluated and the best ones are then compared based on real measurements.
214

Circuits de récupération d’énergie très basse puissance pour transducteurs à capacité variable / Very Low-power Interface Circuits for Variable Capacitance-based Energy Harvesters

Wei, Jie 28 September 2017 (has links)
La récupération d'énergie mécanique de vibration à l’aide de transducteurs à capacité variable mène à l’étude de systèmes non linéaires complexes, mais présente des perspectives applicatives très prometteuses. Notre travail a porté sur l’étude d’une nouvelle famille de circuits d'interface pour transducteurs capacitifs. Entre autres avantages, ces circuits sont réalisables avec des rendements élevés à très basse puissance, typiquement dès quelques dizaines de nano-watts de puissance moyenne, ce qui les distingue des solutions présentées dans de l’état de l’art. De plus, Les circuits étudiés dans cette thèse ne contiennent aucun composant magnétique, ce qui constitue un atout considérable en termes de miniaturisation et d’intégration et permet eu outre la compatibilité avec l’imagerie par résonance magnétique. Les différentes structures qui constituent la famille de circuits proposés permettent de répondre à différentes contraintes imposées par le transducteur capacitif, en particulier le rapport des capacités maximale et minimale Cmax/Cmin. A partir d’une tension de sortie donnée, la tension appliquée sur le transducteur capacitif peut être modifiée en utilisant différents circuits ou en utilisant un circuit unique dont la topologie est modifiée à l’aide d’un interrupteur électronique. Les modèles théoriques développés prennent en compte le couplage électromécanique du transducteur de manière à décrire le comportement global des systèmes étudiés. Les circuits étudiés ont été validés expérimentalement avec deux transducteurs capacitifs de structure différente. En pratique, le rendement de ces circuits est proche de 80% pour des puissances converties aussi basses que la centaine de nano watts. / The mechanic vibration energy harvesting using variable capacitance transducers leads to the study of complex nonlinear systems but has very promising application perspectives. Our work focused on the study of a new family of interface circuits for capacitive transducers. Among all the advantages, these circuits are achievable with high efficiencies at very low power, typically a few tens of nanowatts average power, which distinguishes them from the solutions presented in the state of the art. Moreover, the circuits studied in this thesis do not contain any magnetic components, which is a considerable asset in terms of miniaturization and integration and also allows compatibility with magnetic resonance imaging. The various structures which constitute the family of circuits proposed make it possible to satisfy various constraints imposed by the capacitive transducer, in particular, the ratio of the maximum and minimum capacities Cmax / Cmin. For a given output voltage, the voltage applied to the capacitive transducer can be varied by using different circuits or by using a single circuit whose topology is modified by the operation of an electronic switch. In order to describe the overall behavior of the studied systems, the electromechanical coupling of the transducer is taken into account in the developed theoretical models. The studied circuits have been validated experimentally with two capacitive transducers of different structure. In practice, the output of these circuits is close to 80% for converted powers as low as the hundred nanowatts.
215

Récupérateur d'énergie vibratoire MEMS électrostatique à large bande pour applications biomédicales / Electrostatic MEMS vibrational energy harvester with large bandwidth for biomedical applications

Vysotskyi, Bogdan 24 September 2018 (has links)
Ce travail de recherche porte sur le développement et la mise au point d'un récupérateur d'énergie vibratoire MEMS à transduction capacitive dédié aux applications biomédicales et plus particulièrement aux stimulateurs cardiaques sans sondes autonomes. Cette application impose une miniaturisation poussée (volume inférieur à 1 cm³), une puissance de sortie dans la gamme allant de 1 à 10 µW et une compatibilité vis-à-vis des systèmes d'Imagerie à Résonance Magnétique (IRM). Ces contraintes ainsi que l'effet de la gravité ont été pris en compte sur tout le flot de conception afin d'obtenir un dispositif innovant en technologie MEMS silicium capable de fournir une puissance de sortie suffisante quelle que soit son orientation une fois implanté. Afin de convertir efficacement les battements cardiaques ayant un spectre étendu (de 1 à 50 Hz) pour une amplitude d'accélération faible (inférieure à 1 g), le système emploie des bras de suspension ayant une raideur non-linéaire ce qui permet d'étendre notablement la bande passante effective du système. Cette non-linéarité est ici induite de manière originale en faisant en sorte que la forme initiale des bras de suspension soit une combinaison linéaire des modes de déformée propre d'une poutre doublement encastrée. Un soin particulier a été apporté afin de modéliser ceci dans le but de prédire la réponse mécanique du système quels que soient les stimuli imposés. Afin de réaliser les différents dispositifs de test, une technologie MEMS de type SOG (Silicon-On-Glass) a été développée. Cette technologie permet d'obtenir des structures en silicium monocristallin avec un fort rapport d'aspect tout en limitant le budget thermique et se montre donc compatible avec une éventuelle industrialisation. Ceci a été prouvé via la réalisation de multiples véhicules de test qui se sont montrés totalement fonctionnels. Ainsi la pertinence des modèles théoriques permettant de prédire le comportement non-linéaire des ressorts employés a été prouvée de manière expérimentale. De même, les récupérateurs d'énergie réalisés ont été testés en régime harmonique mais également via des stimuli cardiaques et ont montré une large bande passante avec une puissance de sortie équivalente à celle donnée dans l'état de l'art et ce, quelle que soit leur orientation par rapport à la gravité. / Present work addresses question of MEMS capacitive vibrational energy harvesting for biomedical applications, and notably for powering an autonomous leadless pacemaker system. Such an application imposes several critical requirements upon the energy harvesting system, notably the sufficient miniaturization (<1cm³), power output in range of 1-10 µW, compatibility with Magnetic Resonant Imaging (MRI). This work addresses a problematic of MEMS energy harvester design, simulation, fabrication and characterization fulfilling such a requirement. Moreover, a gravity effect is studied and taken into account in the conception of the device to ensure the power output at various orientations of the harvester. To attain a heartbeat frequencies (1-50 Hz) and acceleration amplitudes (<1g), the use of nonlinear springs is proposed. A nonlinear stiffness is implemented in original way of introducing a natural bending mode shapes in the initial beam form. A mechanical description of bending mode coupling along with its impact on a reaction force of the suspension springs is presented. An innovative clean room technology based on silicon-on-glass (SOG) wafers is developed for the fabrication of the innovative energy harvesters with high width-to-depth aspect ratio. A straightforward and rapid low-temperature process with the possibility of future industrialization is validated by multiple experimental realizations of miniaturized MEMS energy harvesters. Fabricated microsystems are tested mechanically and electrically. Proposed theoretical model of the curved beam is validated with reactive force measurements of the MEMS springs. Energy harvesting experiments are performed for both harmonic and heartbeat mechanical excitations, which demonstrate the large bandwidth in low frequencies domain and a sufficiently large state-of-the-art power output for envisaged application under different orientations with respect to the gravity.
216

Stockage adaptatif pour noeud de capteur sans fil autonome et sans batterie / Adaptive storage for autonomous and battery-free wireless sensor node

El Mahboubi, Firdaous 17 December 2018 (has links)
L'autonomie énergétique est un verrou majeur au déploiement massif de réseau de capteurs sans fil dans nombreuses applications. La récupération d'énergie et son stockage constituent une voie pour améliorer cette autonomie. Dans certaines applications en environnement sévère ou nécessitant des durées de vie élevées, l'utilisation de batteries pour le stockage est prohibée. On a alors recours à du stockage sur supercondensateurs. Ce type de stockage présente des inconvénients nécessitant un compromis entre 3 facteurs : la charge rapide des supercondensateurs (capacité faible), l'énergie maximale stockée (capacité forte) et la maximisation de l'usage de l'énergie stockée (tension résiduelle basse). Pour répondre à ces critères apparemment contradictoires, nous avons proposé trois architectures de stockage auto-adaptatif. La première est composée d'une matrice de quatre supercondensateurs identiques, interconnectés par des interrupteurs, dont la capacité équivalente s'adapte à l'énergie stockée. Les deuxième et troisième architectures sont constituées de deux supercondensateurs, l'une de capacité faible et l'autre de capacité grande, la différence entre les deux architectures étant liée au nombre et type d'interrupteurs utilisés. Les architectures de stockage auto-adaptatif que nous avons proposées incluent une circuiterie de contrôle appropriée autoalimentée et permettant de faire varier la capacité apparente du dispositif. De plus, chaque architecture permet un démarrage à froid avec des supercondensateurs complètement vides. Ces trois architectures ont d'abord été optimisées en simulation puis validées expérimentalement en composants discrets. Finalement, nous avons implémenté l'architecture de stockage auto-adaptatif à deux supercondensateurs au sein d'un système de mesure sans fil complet utilisant une source de récupération d'énergie et son électronique associée pour son alimentation et montré la pertinence de cette approche de stockage reconfigurable. En termes d'efficacité d'usage de l'énergie, elles permettent d'atteindre jusqu'à 94,7% en composants discrets, valeur qui pourrait être encore améliorée en version intégrée sur silicium à la fois pour la circuiterie de contrôle et les supercondensateurs. / Energy autonomy is a major challenge in the massive deployment of wireless sensor networks in numerous applications. Energy harvesting and storage can serve as solutions to the autonomy issues. However, the harsh environment of certain applications requires a long lifetime since the use of batteries for storage is prohibited. We then resort to storage on ultra-capacitors. This type of storage has disadvantages that require a compromise between 3 factors: the fast charge of ultra-capacitors (low capacity), the maximum energy storage (strong capacity), and the maximization of stored energy utilization (low residual voltage). To meet these seemingly contradictory criteria, we propose three self-adaptive storage architectures. The first consists of a matrix of four identical ultra-capacitors, interconnected by switches, whose equivalent capacity adapts to the stored energy. The second and third architectures consist of two ultra-capacitors, one of low capacity and the other of large capacity, the difference between the two architectures being related to the number and type of switches used. The self-adaptive storage architectures that we propose include a suitable self-powered control circuitry to vary the apparent capacity of the device. In addition, each architecture allows a cold start with completely empty ultra-capacitors. These three architectures were first optimized through simulation, and then validated experimentally with discrete components. Finally, we implemented the self-adaptive storage architecture with two ultra-capacitors in a completely wireless measurement system, using an energy harvesting source and its associated electronics for its power supply, and demonstrated the relevance of this approach of reconfigurable storage. In conclusion, we deduce that the topologies can reach an efficiency of energy usage of up to 94.7% by employing discrete components, a value that could be further improved through the exploitation of a silicon integrated version for both the control circuitry and the ultra-capacitors.
217

A Low Power FinFET Charge Pump For Energy Harvesting Applications

Kyle Whittaker (8782256) 01 May 2020 (has links)
<div>With the growing popularity and use of devices under the great umbrella that is the Internet of Things (IoT), the need for devices that are smaller, faster, cheaper and require less power is at an all time high with no intentions of slowing down. This is why many current research efforts are very focused on energy harvesting. Energy harvesting is the process of storing energy from external and ambient sources and delivering a small amount of power to low power IoT devices such as wireless sensors or wearable electronics. A charge pumps is a circuit used to convert a power supply to a higher or lower voltage depending on the specific application. Charge pumps are generally seen in memory design as a verity of power supplies are required for the newer memory technologies. Charge pumps can be also be designed for low voltage operation and can convert a smaller energy harvesting voltage level output to one that may be needed for the IoT device to operate. In this work, an integrated FinFET (Field Effect Transistor) charge pump for low power energy harvesting applications is proposed.</div><div><br></div><div>The design and analysis of this system was conducted using Cadence Virtuoso Schematic L-Editing, Analog Design Environment and Spectre Circuit Simulator tools using the 7nm FinFETs from the ASAP7 7nm PDK. The research conducted here takes advantage of some inherent characteristics that are present in FinFET technologies, including low body effects, and faster switching speeds, lower threshold voltage and lower power consumption. The lower threshold voltage of the FinFET is key to get great performance at lower supply voltages.</div><div><br></div><div>The charge pump in this work is designed to pump a 150mV power supply, generated from an energy harvester, to a regulated 650mV, while supplying 1uA of load current, with a 20mV voltage ripple in steady state (SS) operation. At these conditions, the systems power consumption is 4.85uW and is 31.76% efficient. Under no loading conditions, the charge pump reaches SS operation in 50us, giving it the fastest rise time of the compared state of the art efforts mentioned in this work. The minimum power supply voltage for the system to function is 93mV where it gives a regulated output voltage of 425mV.</div><div><br></div><div>FinFET technology continues to be a very popular design choice and even though it has been in production since Intel's Ivy-Bridge processor in 2012, it seems that very few efforts have been made to use the advantages of FinFETs for charge pump design. This work shows though simulation that FinFET charge pumps can match the performance of charge pumps implemented in other technologies and should be considered for low power designs such as energy harvesting.</div>
218

Carbon Dioxide Valorization through Microbial Electrosynthesis in the Context of Circular Bioeconomy

Bian, Bin 11 1900 (has links)
Microbial electrosynthesis (MES) has recently emerged as a novel biotechnology platform for value-added product generation from waste CO2 stream. Integrating MES technology with renewable energy sources for both CO2 valorization and renewable energy storage is regarded as one type of artificial photosynthesis and a perfect example of circular bioeconomy. However, several challenges remain to be addressed to scale-up MES as a feasible process for chemical production, which include enhanced production rate, reduced energy consumption and excellent resistance to external fluctuations. To fill these knowledge gaps, different in-depth approaches were proposed in this dissertation by optimizing the cathode architecture, CO2 flow rates and utilizing efficient photoelectrode to improve MES performance and stability. A novel cathode design, made of conductive hollow fiber membrane, was developed in this dissertation to improve CO2 availability at MES cathode surface via direct CO2 delivery to chemolithoautotrophs through the pores in the hollow fibers. By modifying the hollow fiber surface with carbon nanotubes (CNTs), higher bioproduct formation was achieved with excellent faradaic efficiencies, which could be attributed to the improved surface area for bacterial adhesion and the reduction of cathodic electron transfer resistance. Since CO2 flow rate from industrial facilities typically varies over time, this hollow-fiber architecture was also applied to test the resistance of MES systems to CO2 flow rate fluctuation. Stepwise increase of CO2 flow rates from 0.3 ml/min to 10 ml/min was tested and the effect of CO2 flow rate fluctuations was evaluated in terms of biochemical generation and microbial community. MES was further integrated with renewable energy supply for both energy storage and CO2 transformation into biofuels and biochemicals. Stable MES photoanode, based on molybdenum-doped bismuth vanadate deposited on fluorine-doped tin oxide glass (FTO/BiVO4/Mo), was prepared for efficient solar energy harvesting and overpotential reduction for oxygen evolution reaction (OER), which contributed to one of the highest solar-to-biochemical conversion efficiencies ever reported for photo-assisted MES systems. The applied nature of this dissertation with fundamental insights is of great importance to bring MES one step closer to full-scale applications and enable MES technology to be economically more viable for renewable energy storage and CO2 valorization.
219

Towards Perpetual Energy Operation in Wireless Communication Systems

Benkhelifa, Fatma 11 1900 (has links)
Wireless is everywhere. Smartphones, tablets, laptops, implantable medical devices, and many other wireless devices are massively taking part of our everyday activities. On average, an actively digital consumer has three devices. However, most of these wireless devices are small equipped with batteries that are often limited and need to be replaced or recharged. This fact limits the operating lifetime of wireless devices and presents a major challenge in wireless communication. To improve the perpetual energy operation of wireless communication systems, energy harvesting (EH) from the radio frequency (RF) signals is one promising solution to make the wireless communication systems self-sustaining. Since RF signals are known to transmit information, it is interesting to study when RF signals are simultaneously used to transmit information and scavenge energy, namely simultaneous wireless information and power transfer (SWIPT). In this thesis, we specifically aim to study the SWIPT in multiple-input multiple-output (MIMO) relay communication systems and in cognitive radio (CR) networks. First, we study the SWIPT in MIMO relay systems where the relay harvests the energy from the source and uses partially/fully the harvested energy to forward the signal to the destination. For both the amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols, we consider the ideal scheme where both the energy and information transfer to the relay happen simultaneously, and the practical power splitting and time switching schemes. For each scheme, we aim to maximize the achievable end-to-end rate with a certain energy constraint at the relay. Furthermore, we consider the sum rate maximization problem for the multiuser MIMO DF relay broadcasting channels with multiple EH-enabled relays, and an enhanced low complex solution is proposed based on the block diagonalization method. Finally, we study the energy and data performance of the SWIPT in CR network where either the primary receiver (PR) or the secondary receiver (SR) is using the antenna switching (AS) technique. When the PR is an EH-enabled node, we illustrate the incentive of spectrum sharing in CR networks. When the SR is an EH-enabled node, we propose two thresholding-based selection schemes: the prioritizing data selection scheme and the prioritizing energy selection scheme.
220

Fully Printed 3D Cube Cantor Fractal Rectenna for Ambient RF Energy Harvesting Application

Bakytbekov, Azamat 11 1900 (has links)
Internet of Things (IoT) is a new emerging paradigm which requires billions of wirelessly connected devices that communicate with each other in a complex radio-frequency (RF) environment. Considering the huge number of devices, recharging batteries or replacing them becomes impractical in real life. Therefore, harvesting ambient RF energy for powering IoT devices can be a practical solution to achieve self-charging operation. The antenna for the RF energy harvesting application must work on multiple frequency bands (multiband or wideband) to capture as much power as possible from ambient; it should be compact and small in size so that it can be integrated with IoT devices; and it should be low cost, considering the huge number of devices. This thesis presents a fully printed 3D cube Cantor fractal RF energy harvesting unit, which meets the above-mentioned criteria. The multiband Cantor fractal antenna has been designed and implemented on a package of rectifying circuits using additive manufacturing (combination of 3D inkjet printing of plastic substrate and 2D metallic screen printing of silver paste) for the first time for RF energy harvesting application. The antenna, which is in a Cantor fractal shape, is folded on five faces of a 3D cube where the bottom face accommodates rectifying circuit with matching network. The rectenna (rectifying antenna) harvests RF power from GSM900, GSM1800, and 3G at 2100 MHz frequency. Indoor and outdoor field tests of the RF energy harvester have been conducted in the IMPACT lab and the King Abdullah University of Science and Technology (KAUST) campus territory, and 252.4 mV of maximum output voltage is harvested.

Page generated in 0.0571 seconds