• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 48
  • 46
  • 32
  • 26
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 489
  • 489
  • 110
  • 99
  • 87
  • 74
  • 71
  • 65
  • 59
  • 56
  • 51
  • 49
  • 47
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Energy Harvesting for Health Monitoring Balises : Analytical study

Carreras Orobengoa, Leire January 2021 (has links)
Balises are transponders installed in railways. These devices are nowadays powered by means of a radiofrequency signal emitted by each running train that passes above them. It is only during this moment that the health state of the balises is checked. Hence, there is currently no way to check whether the balises are properly working before the train passes by them. With the aim of executing regular health checks to the balises, an additional source of energy to monitor the balises should be contemplated. Energy harvesting is observed as a suitable solution for this issue. However, a lack of suitability studies is contemplated which englobes the available energy harvesting solutions in railway environments. Therefore, this thesis presents an exploratory work that uses the health monitoring of the balises as a test case for the study of the compatibility of different energy harvesters in diverse railway environments. Hazardous and remote areas are identified as locations of interest for the implementation of the technology, as cabling in those areas is costly and health checks to balises that are not constantly active are of outmost interest. Thus, the addition of wireless communication networks is also studied, due to the need of sending the information obtained in the health checks to monitoring control units. After an initial research study is performed, requirements in railway environments are defined, and three railway scenarios are selected for a suitability study. Then, the investigated energy harvesters and wireless communication networks are compared analytically, and possible technologies for the storage of the harvested energy are presented. It is found that no energy harvester exists that suits all the environments and shows a sufficient power output to make constant checks in remote areas. Nonetheless, piezoelectric and wind harvesters are proposed, because of the commercial availability of the former and the potential of the latter. In terms of wireless communication networks, LoRaWAN shows a low power consumption, while it offers a wide communication range and global coverage. It is, therefore, proposed as the best framework for the wireless communication networks. / Baliser är transpondrar installerade i järnvägar. Dessa enheter drivs numera med hjälp av en radiofrekvenssignal som sänds ut av varje tåg som passerar ovanför baliserna. Det är först i detta ögonblick som balises hälsotillstånd kontrolleras. Därför finns det för närvarande inget sätt att kontrollera om baliserna fungerar korrekt innan tåget passerar dem. I syfte att utföra regelbundna hälsokontroller på baliserna bör en ytterligare kraftkälla för att övervaka baliserna övervägas. Energy harvesting observeras som en lämplig lösning för denna fråga. Det råder dock brist på lämplighetsstudier som förenar de tillgängliga energy harvesting lösningarna i järnvägsmiljöer. Därför presenterar denna avhandling ett undersökande arbete som använder hälsoövervakningen av baliserna som ett testfall för att studera kompatibiliteten hos olika energiskördare i olika järnvägsmiljöer. Farliga och avlägsna områden identifieras som platser av intresse för genomförandet av tekniken, eftersom kablar i dessa områden är kostsamma och hälsokontroller till baliser som inte ständigt är aktiva är av yttersta intresse. Således studeras också tillägget av trådlösa kommunikationsnätverk på grund av behovet av att skicka den information som erhållits vid hälsokontrollerna till övervakningskontrollområdena. Efter att en inledande forskningsstudie genomförts definieras krav i järnvägsmiljöer och tre järnvägsscenarier väljs ut för en lämplighetsstudie. Sedan jämförs de undersökta energiskördarna och trådlösa kommunikationsnätverk analytiskt, och eventuell teknik för lagring av den skördade energin presenteras. Det konstateras att det inte finns någon energiskördare som passar alla miljöer och visar en tillräckligt effekt för att göra konstanta kontroller i avlägsna områden. Ändå föreslås piezoelektriska och vindskördare på grund av den förstnämnda kommersiella tillgänglighet och den senare potentialen. När det gäller trådlösa kommunikationsnätverk visar LoRaWAN en låg strömförbrukning, medan det erbjuder ett brett kommunikationssortiment och global täckning. Det föreslås därför som den bästa ramen för de trådlösa kommunikationsnäten.
242

Power Conservation in Energy Harvesting Sensor Networks

Roberts, Timothy A. 10 1900 (has links)
<p>We examine energy harvesting sensor networks, more specifically, a sensor network using the Geographic Routing with Environmental Energy Supply (GREES) algorithm. We start with a discussion of other sources of energy conservation both in energy harvesting and non-energy harvesting sensor networks. Ideas presented in these works are combined where possible with the GREES algorithm. A sensor network was actually built to test and (if possible) improve the algorithm. There were problems along the way, but they were overcome to produce a functioning energy harvesting sensor network that used solar cells as the energy harvesting unit. Tests were run on the network by giving a consistent light and battery supply, and then changing parameters of the algorithm to see their effect on the lifetime of the network, indicating the network's sensitivity to individual parameters. These results are presented, along with their interpretation, as well as an error analysis detailing the behaviour of the algorithm. We discuss how sensitive the network is to each parameter, indicating which parameters are more important to calibrate or measure correctly.</p> / Master of Applied Science (MASc)
243

Simultaneous Vibration Control and Energy Harvesting of Nonlinear Systems Applied to Power Lines

Kakou, Paul-Camille 28 May 2024 (has links)
The resilience of power infrastructure against environmental challenges, particularly wind-induced vibrations, is crucial for ensuring the reliability and longevity of overhead power lines. This dissertation extends the development of the Mobile Damping Robot (MDR) as a novel solution for mitigating wind-induced vibrations through adaptive repositioning and energy harvesting capabilities. Through comprehensive experimental and numerical analyses, the research delineates the design, optimization, and application of the MDR, encompassing its dynamic adaptability and energy harvesting potential in response to varying wind conditions. The study begins with the development and validation of a linearized model for the MDR, transitioning to advanced nonlinear models that more accurately depict the complex interactions between the robot, cable system, and environmental forces. A global stability analysis provides crucial insights into the operational limits and safety parameters of the system. Further, the research explores a multi-degree-of-freedom system model to evaluate the MDR's efficacy in real-world scenarios, emphasizing its energy harvesting efficiency and potential for sustainable operation. Findings from this research show the clear promise for the development of the MDR with the consideration of the nonlinear dynamics in play between the robot, the cable, and the wind. This work lays a foundational framework for future innovations in infrastructure maintenance, paving the way for the practical implementation of mobile damping technologies in energy systems. / Doctor of Philosophy / Across the United States, over 160,000 miles of power lines crisscross the landscape, powering everything from small homes to large industrial complexes. These critical infrastructures, however, are constantly battered by the elements, particularly by strong winds capable of inducing Aeolian vibrations. Such vibrations lead to oscillations in the power lines due to wind forces, potentially causing severe structural damage, compromising public safety, and incurring considerable economic costs. In response to these challenges, various mitigation strategies have been employed. Traditional methods include regular inspections carried out by foot patrols, helicopters, or sophisticated inspection robots, though these approaches are notably resource-intensive and costly. Additionally, mechanical devices like Stockbridge dampers are utilized to dampen the vibrations, but they suffer from efficiency issues when misaligned with the vibration nodes. This dissertation extends the study to an innovative solution to overcome these limitations: a mobile damping robot designed to navigate along power lines and autonomously position itself at the points of highest vibration amplitude, thereby optimizing vibration dampening. This study delves into the feasibility and effectiveness of such a solution, supported by thorough numerical simulations. The aim is to demonstrate how this advanced approach could redefine maintenance strategies for power lines, enhancing their resilience against wind-induced vibrations and reducing the reliance on laborious inspection methods and static damping devices with limited efficiency.
244

Design and Analysis of Switching Circuits for Energy Harvesting in Piezostrutures

Kim, Woon Kyung 21 August 2012 (has links)
This study deals with a general method for the analysis of a semi-active control technique for a fast-shunt switching system. The benefit of the semi-active system is the reduction in power consumption, which is a significant disadvantage of a fully active system compared with a passive system. A semi-active system under consideration is a semi-actively shunted piezoelectric system, which converts the strain energy into electrical energy through strong electromechanical coupling achieved though the piezoelectric phenomenon. Our proposed semi-active approach combines a PZT-based energy harvesting with a fast switching system driven by a Pulse-Width Modulated (PWM) signal. The fast switching system enables continuous adaptation of vibration energy control/harvesting by varying the PWM duty cycle. This contrasts with a conventional capacitance switching system that can only change the capacitance at discrete values. The analysis of the current piezoelectric system combined with a fast-switching system poses a considerable challenge as it contains both continuous and discrete characteristics. The study proposes an enhanced averaging method for analyzing the piecewise linear system. The simulation of the averaged system is much faster than that of the time-varying system. Moreover, the analysis derives error bounds that characterize convergence in the time domain of the averaged system to the original system. The dissertation begins with the derivation of the equations governing the physics of a piezostructure combined with an electrical switching shunt network. The results of the averaging analysis and numerical simulation are presented in order to provide a basis for estimating the structural responses that range between open- and short-circuit conditions which constitutes two limiting conditions. An experimental study demonstrates that the capacitive shunt bimorph piezostructure coupled with a single switch can be adjusted continuously by varying the PWM duty cycle. And the behavior of such hybrid system can be well predicted by the averaging analysis. / Ph. D.
245

Nanoparticle-based Organic Energy Storage with Harvesting Systems

Al Haik, Mohammad Yousef 04 May 2016 (has links)
A new form of organic energy storage devices (organic capacitors) is presented in the first part of this dissertation. The storage devices are made out of an organic semiconductor material and charge storage elements from synthesized nanoparticles. The semiconducting polymer is obtained by blending poly (vinyl alcohol) and poly (acrylic acid) in crystal state polymers with a known plasticizer; glycerol or sorbitol. Synthesized nanoparticles namely, zinc-oxide (ZnO), erbium (Er), cadmium sulfide (CdS), palladium (Pd) and silver-platinum (AgPt) were used as charge storage elements in fabrication of metal-insulator-semiconductor (MIS) structure. The organic semiconductor and synthesized nanoparticles are tested to evaluate and characterize their electrical performance and properties. Fabrication of the organic capacitors consisted of layer-by-layer deposition and thermal evaporation of the electrode terminals. Capacitance versus voltage (C-V) measurement tests were carried out to observe hysteresis loops with a window gate that would indicate the charging, discharging and storage characteristics. Experimental investigation of various integrated energy harvesting techniques combined with these organic based novel energy storage devices are performed in the second part of this dissertation. The source of the energy is the wind and is harvested by means of miniature wind turbines and vibrations, using piezoelectric transduction. In both cases, the generated electric charge is stored in these capacitors. The performance of the organic capacitors are evaluated through their comparison with commercial capacitors. The results show that the voltage produced from the two energy harvesters was high enough to store the harvested energy in the organic capacitors. The charge and energy levels of the organic capacitors are also reported. The third part of this dissertation focuses on harvesting energy from a self-induced flutter of a thin composite beam. The composite beam consisted of an MFC patch bonded near the clamped end and placed vertically in the center of a wind tunnel test section. The self sustaining energy harvesting from the unimorph composite beam is exploited. The effects of different operational parameters including the optimum angle of attack, wind speed and load resistance are determined. / Ph. D.
246

Threat and Application of Frequency-Agile Radio Systems

Zeng, Kexiong 16 November 2018 (has links)
As traditional wireless systems that only operate on fixed frequency bands are reaching their capacity limits, advanced frequency-agile radio systems are developed for more efficient spectrum utilization. For example, white space radios dynamically leverage locally unused TV channels to provide high-speed long-distance connectivity. They have already been deployed to connect the unconnected in rural areas and developing countries. However, such application scenarios are still limited due to low commercial demand. Hence, exploring better applications for white space radios needs more effort. With the benefits come the threats. As frequency-agile radio systems (e.g., software-defined radios) are flexible and become extremely low-cost and small-sized, it is very convenient for attackers to build attacking tools and launch wireless attacks using these radios. For example, civilian GPS signals can be easily spoofed by low-cost portable spoofers built with frequency-agile radio systems. In this dissertation, we study both the threat and application of frequency-agile radio systems. Specifically, our work focuses on the spoofing threat of frequency-agile radio towards GPS-based systems and the application of TV white space radio for ocean communications. Firstly, we explore the feasibility of using frequency-agile radio to stealthily manipulate GPS-based road navigation systems without alerting human drivers. A novel attacking algorithm is proposed, where the frequency-agile radio transmits fake GPS signals to lead the victim to drive on a wrong path that looks very similar with the navigation route on the screen. The attack's feasibility is demonstrated with real-world taxi traces in Manhattan and Boston. We implement a low-cost portable GPS spoofer using an off-the-shelf frequency-agile radio platform to perform physical measurements and real-world driving tests, which shows the low level of difficulty of launching the attack in real road environment. In order to study human-in-the-loop factor, a deceptive user study is conducted and the results show that 95% of the users do not recognize the stealthy attack. Possible countermeasures are summarized and sensor fusion defense is explored with preliminary tests. Secondly, we study similar GPS spoofing attack in database-driven cognitive radio networks. In such a network, a secondary user queries the database for available spectrum based on its GPS location. By manipulating GPS locations of surrounding secondary users with a frequency-agile radio, an attacker can potentially cause serious primary user interference and denial-of-service to secondary users. The serious impact of such attacks is examined in simulations based on the WhiteSpaceFinder spectrum database. Inspired by the characteristics of the centralized system and the receiving capability of cognitive radios, a combination of three defense mechanisms are proposed to mitigate the location spoofing threat. Thirdly, we explore the feasibility of building TV white space radio based on frequency-agile radio platform to provide connectivity on the ocean. We design and implement a low-cost low-power white space router ($523, 12 watts) customized for maritime applications. Its communication capability is confirmed by field link measurements and ocean-surface wave propagation simulations. We propose to combine this radio with an energy harvesting buoy so that the radio can operate independently on the ocean and form a wireless mesh network with other similar radios. / PHD / As traditional wireless systems, such as mobile phones and WiFi access points, only operate on some fixed frequency bands, it becomes increasingly crowded for those popular bands. Hence, for more efficient frequency resource utilization, frequency-agile radio systems that can dynamically operate on different frequency bands are developed. With these new technologies come new threats and applications, which are the focus of our work. On the one hand, as frequency-agile radio systems become low-cost and portable, attackers can easily launch wireless attacks with them. For example, we explored the feasibility, impact, and countermeasures for GPS spoofing attacks using frequency-agile radio systems in different scenarios. In a GPS spoofing attack, an attacker transmits false GPS signals to manipulate users’ GPS receivers. This kind of attack can be very dangerous and even life-threatening if it is launched against critical GPS-based applications. For example, once GPS-based navigation systems in self-driving cars are stealthily manipulated by remote attackers, attackers can divert self-driving cars to pre-defined destinations or dangerous situations like wrong-way driving on highway. On the other hand, since there is rich under-utilized spectrum resource in remote areas with no broadband connection yet, frequency-agile radio systems can be used to provide broadband internet connectivity there. For example, based on frequency-agile radio platform, we developed a low-cost low-power wireless router that can dynamically operate on TV broadcasting band. It is able to provide high-speed wireless connection to a large area on the ocean. This technology has the potential to bring low-cost high-speed connection to people and industry on the ocean, which will facilitate various maritime applications.
247

Design, Modeling and Control of Vibration Systems with Electromagnetic Energy Harvesters and their Application to Vehicle Suspensions

Liu, Yilun 07 November 2016 (has links)
Instead of dissipating vibration energy into heat waste via viscous damping elements, this dissertation proposes an innovative vibration control method which can simultaneously mitigate vibration and harvest the associated vibration energy using electromagnetic energy harvesters. This dissertation shows that the electromagnetic energy harvester can work as a controllable damper as well as an energy harvester. The semi-active control of a linear electromagnetic energy harvester, for improvement of suspension performance, has been experimentally implemented in a scaled-down quarter-car suspension system. While improving performance, power produced by the harvester can be harvested through energy harvesting circuits. This dissertation also proposes a mechanical-motion-rectifier(MMR)-based electromagnetic energy harvester using a ball-screw mechanism and two one-way clutches for the application of replacing the viscous damper in vehicle suspensions. Compared to commercial linear harvesters, the proposed design is able to provide large damping forces and increase power-dissipation density, making it suitable to vehicle suspensions. In addition, the proposed MMR-based harvester can convert reciprocating vibration into unidirectional rotation of the generator. This feature significantly increases energy-harvesting efficiency by enabling the generator to rotate at a relatively steady speed during irregular vibrations and improves the system reliability by reducing impact forces among transmission gears. Extensive theoretical and experimental analysis have been conducted to characterize the proposed MMR-based energy harvester. The coupled dynamics of the suspension system with the MMR-based energy harvester are also explored and optimized. Furthermore, a new control algorithm is proposed to control the MMR-based energy harvester considering its unique dynamics induced by the one-way clutches. The results show that the controlled proposed electromagnetic energy harvester can possibly improve ride comfort of vehicles over conventional oil dampers and simultaneously harvest the associated vibration energy. / Ph. D.
248

Low-power Power Management Circuit Design for Small Scale Energy Harvesting Using Piezoelectric Cantilevers

Kong, Na 26 May 2011 (has links)
The batteries used to power wireless sensor nodes have become a major roadblock for the wide deployment. Harvesting energy from mechanical vibrations using piezoelectric cantilevers provides possible means to recharge the batteries or eliminate them. Raw power harvested from ambient sources should be conditioned and regulated to a desired voltage level before its application to electronic devices. The efficiency and self-powered operation of a power conditioning and management circuit is a key design issue. In this research, we investigate the characteristics of piezoelectric cantilevers and requirements of power conditioning and management circuits. A two-stage conditioning circuit with a rectifier and a DC-DC converter is proposed to match the source impedance dynamically. Several low-power design methods are proposed to reduce power consumption of the circuit including: (i) use of a discontinuous conduction mode (DCM) flyback converter, (ii) constant on-time modulation, and (iii) control of the clock frequency of a microcontroller unit (MCU). The DCM flyback converter behaves as a lossless resistor to match the source impedance for maximum power point tracking (MPPT). The constant on-time modulation lowers the clock frequency of the MCU by more than an order of magnitude, which reduces dynamic power dissipation of the MCU. MPPT is executed by the MCU at intermittent time interval to save power. Experimental results indicate that the proposed system harvests up to 8.4 mW of power under 0.5-g base acceleration using four parallel piezoelectric cantilevers and achieves 72 percent power efficiency. Sources of power losses in the system are analyzed. The diode and the controller (specifically the MCU) are the two major sources for the power loss. In order to further improve the power efficiency, the power conditioning circuit is implemented in a monolithic IC using 0.18-μ­m CMOS process. Synchronous rectifiers instead of diodes are used to reduce the conduction loss. A mixed-signal control circuit is adopted to replace the MCU to realize the MPPT function. Simulation and experimental results verify the DCM operation of the power stage and function of the MPPT circuit. The power consumption of the mixed-signal control circuit is reduced to 16 percent of that of the MCU. / Ph. D.
249

Unsteady Nonlinear Aerodynamic Modeling and Applications

Zakaria, Mohamed Yehia 10 May 2016 (has links)
Unsteady aerodynamic modeling is indispensable in the design process of rotary air vehicles, flapping flight and agile unmanned aerial vehicles. Undesirable vibrations can cause high-frequency variations in motion variables whose effects cannot be well predicted using quasi-steady aerodynamics. Furthermore, one may exploit the lift enhancement that can be generated through an unsteady motion for optimum design of flapping vehicles. Additionally, undesirable phenomena like the flutter of fixed wings and ensuing limit cycle oscillations can be exploited for harvesting energy. In this dissertation, we focus on modeling the unsteady nonlinear aerodynamic response and present various applications where unsteady aerodynamics are very relevant. The dissertation starts with experiments for measuring unsteady loads on an NACA-0012 airfoil undergoing a plunging motion under various operating conditions. We supplement these measurements with flow visualization to obtain better insight into phenomena causing enhanced lift. For the model, we present the frequency response function for the airfoil at various angles of attack. Experiments were performed at reduced frequencies between 0.1 and 0.95 and angles of attack up to 65 degrees. Then, we formulate an optimization problem to unify the transfer function coefficients for each regime independently to obtain one model that represents the global dynamics. An optimization-based finite-dimensional (fourth-order) approximation for the frequency responses is developed. Converting these models to state-space form and writing the entries of the matrices as polynomials in the mean angle of attack, a unified unsteady model was developed. In the second set of experiments, we measured the unsteady plunging forces on the same airfoil at zero forward velocity. The aim is to investigate variations of the added forces associated with the oscillation frequency of the wing section for various angles of attack. Data of the measured forces are presented and compared with predicted forces from potential flow approximations. The results show a significant departure from those estimates, especially at high frequencies indicating that viscous effects play a major role in determining these forces. In the second part of this dissertation, we consider different applications where unsteady loads and nonlinear effects play an important role. We perform a multi-objective aerodynamic optimization problem of the wing kinematics and planform shape of a Pterosaur replica ornithopter. The objective functions included minimization of the required cycle-averaged aerodynamic power and maximization of the propulsive efficiency. The results show that there is an optimum kinematic parameter as well as planform shape to fulfill the two objectives. Furthermore, the effects of preset angle of attack, wind speed and load resistance on the levels of harvested power from a composite beam bonded with the piezoelectric patch are determined experimentally. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations as well as the level of power harvested. This is followed by testing of a centimeter scale micro wind turbine that has been proposed to power small devices and to work as a micro energy harvester. The experimental measurements are compared to predicted values from a numerical model. The methods developed in this dissertation provide a systematic approach to identifying unsteady aerodynamic models from numerical or experimental data that may work within different regimes. The resulting reduced-order models are expressed in a state-space form, and they are, therefore, both simple and efficient. These models are low-dimensional linear systems of ordinary differential equations so that they are compatible with modern flight dynamic models. The specific form of the obtained added force model, which defines the added forces as a function of plunging velocity and drag forces, guarantees that the resulting model is accurate over a range of high frequencies. Moreover, presented applications give a sense of the broad range of application of unsteady aerodynamics. / Ph. D.
250

The Hydrodynamics and Energetics of Bioinspired Swimming with Undulatory Electromechanical Fins

Gater, Brittany L. January 2017 (has links)
Biological systems offer novel and efficient solutions to many engineering applications, including marine propulsion. It is of interest to determine how fish interact with the water around them, and how best to utilize the potential their methods offer. A stingray-like fin was chosen for analysis due to the maneuverability and versatility of stingrays. The stingray fin was modeled in 2D as a sinusoidal wave with an amplitude increasing from zero at the leading edge to a maximum at the trailing edge. Using this model, a parametric study was performed to examine the effects of the fin on surrounding water in computational fluid dynamics (CFD) simulations. The results were analyzed both qualitatively, in terms of the pressure contours on the fin and vorticity in the trailing wake, and quantitatively, in terms of the resultant forces and the mechanical power requirements to actuate the desired fin motion. The average thrust was shown to depend primarily on the relationship between the swimming speed and the frequency and wavelength (which both are directly proportional to the wavespeed of the fin), although amplitude can be used to augment thrust production as well. However, acceleration was shown to significantly correlate with a large variation in lift and moment, as well as with greater power losses. Using results from the parametric study, the potential for power regeneration was also examined. Relationships between frequency, velocity, drag, and power input were determined using nonlinear regression that explained more than 99.8% of the data. The actuator for a fin was modeled as a single DC motor-shaft system, allowing the combination of the energetic effects of the motor with the fin-fluid system. When combined, even a non-ideal fin model was able to regenerate more power at a given flow speed than was required to swim at the same speed. Even in a more realistic setting, this high proportion of regenerative power suggests that regeneration and energy harvesting could be both feasible and useful in a mission setting. / Master of Science / Animals interact with the world much differently than engineered systems, and can offer new and efficient ways to solve engineering problems, including underwater vehicles. To learn how to move an underwater vehicle in an environmentally conscious way, it is useful to study how a fish’s movements affect the manner in which it moves through the water. Through careful study, the principles involved can be implemented for an efficient, low-disturbance underwater vehicle. The particular fish chosen for in-depth study was the stingray, due to its maneuverability and ability to travel close to the seafloor without disturbing the sediment and creatures around it. In this work, computational analysis was performed on a model of a single stingray fin to determine how the motion of the fin affects the water around it, and how the water affects the fin in turn. The results were analyzed both in terms of the wake behind the fin and in terms of how much power was required to make the fin move in a particular way. The speed of the fin motion was found to have the strongest effect in controlling swimming speed, although the lateral motion of the fin also helped with accelerating faster. Additionally, the potential for a robotic stingray fin to harness power from the water around it was examined. Based on results from simulations of the fin, a mathematical model was formulated to relate energy harvesting with the flow speed past the fin. This model was used to determine how worthwhile it was to use energy harvesting. Analysis of the model showed that harvesting energy from the water was quite efficient, and would likely be a worthwhile investment for an exploration mission.

Page generated in 0.0371 seconds