• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 14
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modelagem de motores a combustão interna com tecnologia FLEX. / Internal combustion flex engine modeling.

Marcos Henrique Carvalho Silva 19 January 2018 (has links)
A modelagem de motores a combustão interna deve grande parte de sua importância ao uso de unidades de controle eletrônicas que buscam gerenciar as funções do motor. De forma a fornecer melhor suporte para o projetista de controle, a modelagem oferece informações que servem de planta, sobre a qual estratégias de controle serão desenvolvidas. Nesta dissertação, procurou-se estudar e modelar cinco fenômenos: a admissão de ar e de combustível, a produção de energia efetiva através da combustão, a evolução térmica do motor e o comportamento dos gases no sistema de exaustão. Investigou-se também, em todos estes fenômenos, a influência do uso de composição variada gasolina/etanol. Na admissão de ar, buscou-se estudar como a abertura da válvula borboleta e a velocidade do motor influenciam no fluxo de ar admitido, ponderando esta grandeza através de um fator de correção denominado eficiência volumétrica. Na admissão de combustível, no caso modelada para motores com injeção indireta na porta, procurou-se explanar quantitativamente sobre os diversos aspectos que influenciam a evaporação do combustível. Na geração de energia útil, priorizou-se a análise de como as características do motor e da combustão afetam a produção de torque. Na evolução térmica do motor, examinaram-se os principais fluxos energéticos do motor e os aspectos que os influenciam. Ademais, foram executadas as validações dos modelos levantados para o motor EA 111 VHT 1.6l. Os resultados, com seus respectivos erros, podem ser encontrados neste trabalho. / The internal combustion engine modeling owes big part of its importance to the use of electronic control units that aim to manage the engine functions. To provide better support to the control designer, the modeling offers information that can compose the plant, on which control strategies will be developed. In this master thesis, it was sought to study and to model five phenomena: the air intake and the fuel admission, the effective energy production from the combustion, the engine thermic evolution and the gas behavior in the exhaust system. It was also considered how the influence of the gasoline/ethanol varied composition affects all these phenomena. In the air intake, it was studied how the butterfly valve opening and the engine speed influence the intake air flow, pondering this variable through a correction factor named volumetric efficiency. In the fuel admission, in the case of this study modelled for port-fuel injection engines, it was attempted to explain quantitatively the many aspects that influence the fuel evaporation. In the mechanical energy generation, it was prioritized the analysis about how the engine and combustion characteristics affect the torque production. In the engine thermic evolution, it was examined the major energy flows and the aspects that influence them. Also, the validations of the models raised for the EA 111 VHT 1.6l engine were executed. The results, with its respective errors, can be found in this work.
22

Electrification of Diesel-Based Powertrains for Heavy Vehicles

Tyler A Swedes (11153853) 22 July 2021 (has links)
<div> In recent decades as environmental concerns and the cost and availability of fossil fuels have become more pressing issues, the need to extract more work from each drop of fuel has increased accordingly. Electrification has been identified as a way to address these issues in vehicles powered by internal combustion engines, as it allows existing engines to be operated more efficiently, reducing overall fuel consumption. Two applications of electrification are discussed in the work presented: a series-electric hybrid powertrain from an on-road class 8 truck, and an electrically supercharged diesel engine for use in the series hybrid power system of a wheel loader.</div><div> </div><div> The first application is an experimental powertrain developed by a small start-up company for use in highway trucks. The work presented in this thesis shows test results from routes along (1) Interstate 75 between Florence, KY, and Lexington, KY, and (2) Interstates 74 and 70 east of Indianapolis, during which tests the startup collected power flow data from the vehicle's motor, generator, and battery, and three-dimensional position data from a GPS system. Based on these data, it was determined that the engine-driven generator provided an average of 15% more propulsive energy than required due to electrical losses in the drivetrain. Some of these losses occured in the power electronics, which are shown to be 82% - 92% efficient depending on power flow direction, but the battery showed significant signs of wear, accounting for the remainder of these electrical losses. Overall, most of the system's fuel savings came from its regenerative braking capability, which recaptured between 3% and 12% of the total drive energy output. Routes with significant grade changes maximize this energy recapture percentage, but it is shown minimizing drag and rolling resistance with a more modern truck and trailer could further increase this energy capture to between 8% and 18%.</div><div> </div><div> In the second application, an electrified air handling system is added to a 4.5L engine, allowing it to replace the 6.8L engine in John Deere's 644K hybrid wheel loader. Most of the fuel savings arise from downsizing the engine, so in this case an electrically driven supercharger (eBooster) allows the engine to meet the peak torque requirements of the larger, original engine. In this thesis, a control-oriented nonlinear state space model of the modified 4.5L engine is presented and linearized for use in designing a robust, multi-input multi-output (MIMO) controller which commands the engine's fueling rate, eBooster, eBooster bypass valve, exhaust gas recirculation (EGR) valve, and exhaust throttle. This integrated control strategy will ultimately allow superior tracking of engine speed, EGR fraction, and air-fuel ratio (AFR) targets, but these performance gains over independent single-input single-output control loops for each component demand linear models that accurately represent the engine's gas exchange dynamics. To address this, a physics-based model is presented and linearized to simulate pressures, temperatures, and shaft speeds based on sub-models for exhaust temperature, cylinder charge flow, valve flow, compressor flow, turbine flow, compressor power, and turbine power. The nonlinear model matches the truth reference engine model over the 1200 rpm - 2000 rpm and 100 Nm - 500 Nm speed and torque envelope of interest within 10% in steady state and 20% in transient conditions. Two linear models represent the full engine's dynamics over this speed and torque range, and these models match the truth reference model within 20% in the middle of the operating envelope. However, specifically at (1) low load for any speed and (2) high load at high speed, the linear models diverge from the nonlinear and truth reference models due to nonlinear engine dynamics lost in linearization. Nevertheless, these discrepancies at the edges of the engine's operating envelope are acceptable for control design, and if greater accuracy is needed, additional linear models can be generated to capture the engine's dynamics in this region.</div>
23

Turbofan Engine Modeling - For The Fighter Aircraft of The Future / Modellering av Turbofläktmotor - För Framtidens Stridsflygplan

Tahmasebi, Aria January 2022 (has links)
The demand for turbofan engine performance development is high in the military industry. However, to develop the engine, it is necessary to predict its performance, and engine testing is both time-consuming and costly. Therefore, simulation is an effective approach to predicting the engine’s performance. During this thesis, a low bypass ratio turbofan engine is created in the simulation tool Simulink to investigate the engine performance throughout different flight conditions and maneuvers. The engine model is constructed for the future fighter aircraft at SAAB Aeronautics. The development of a design point has received particular attention throughout the work. After that, the development of proven methods for estimating engine performance of other parts of the flight envelope, resulting in increased model fidelity and enabling simulations of the same engine type but under different conditions and flight cases. To summarize, the tests of the engine model are successful under various design characteristics, conditions, and flight cases. In addition, simulations of the performance evaluation of fighter aircraft engines have been accomplished.
24

[pt] ESTUDO NUMÉRICO DOS MOTORES À IGNIÇÃO POR COMPRESSÃO ASSISTIDA POR CENTELHA (SACI) / [en] NUMERICAL STUDY OF SPARK-ASSISTED COMPRESSION IGNITION ENGINES (SACI)

CAIO FILIPPO RAMALHO LEITE 28 December 2021 (has links)
[pt] Nos últimos anos, a indústria automotiva se reinventou para atender às demandas do mercado, que tem se mostrado competitivo em um contexto com legislações ambientais severas. Uma alternativa para reduzir as emissões de gases de efeito estufa prejudiciais ao longo da vida do veículo são os carros elétricos. No entanto, a produção e o descarte de baterias elétricas ainda é um problema a ser resolvido. Por isso, as empresas também buscam alternativas para aumentar a eficiência do motor de combustão interna e desenvolver tecnologias verdes, como a Ignição por Compressão de Carga Homogênea ou a Ignição por Compressão Assistida por Centelha (SACI). Uma rotina MATLAB foi criada para prever o desempenho da combustão SACI de gás natural usando um modelo termodinâmico de duas zonas. Este trabalho realiza análise de sensibilidade para cinco parâmetros de desempenho: eficiência térmica (Nth), pressão efetiva média indicada (IMEP), emissões de NOx, temperatura média no cilindro (Tavg) e tempo de autoignição (AIT), com várias variáveis como a velocidade do motor (RPM), a razão de equivalência combustível-ar (0s), o tempo da centelha (0s), a razão de compressão (rc) e a pressão de admissão (Pint), usando planejamento de experimentos para avaliar o impacto dos fatores. O Planejamento de Composto Central indica que o RPM e o 0 foram os fatores mais importantes no SACI, uma vez que influenciam todos os parâmetros de desempenho. A Pint foi significativa em três parâmetros de desempenho (Nth, IMEP e Tavg), assim como o 0s (NOx, Tavg e AIT). A rc foi relevante em apenas um deles (AIT). Além disso, uma Análise Univariada foi feita para comparar as técnicas de ignição por centelha (SI) e SACI. Os resultados indicam que os motores SACI tendem a ser cerca de 9% mais eficientes e as emissões de NOx caem mais de 90%. / [en] In the last few years, the automotive industry has reinvented itself to meet the demands of the international market, which has been increasingly competitive in a context with environmental laws each year more severe. One alternative to lower harmful greenhouse gases emissions over the life of the vehicle is electric cars. However, the production and disposal of electric batteries is still a major problem to be solved. Therefore, companies are also searching for other potentialities to increase the internal combustion engine s efficiency and develop green technology, such as Homogeneous Charge Compression Ignition (HCCI) or Spark-Assisted Compression Ignition (SACI). A MATLAB routine was created to predict the performance of SACI multimode combustion of natural gas using a two-zone thermodynamic model. This work performs sensitivity analysis for five performance parameters: thermal efficiency (Nth), indicated mean effective pressure (IMEP), NOx emissions, mean in-cylinder temperature (Tavg), and auto-ignition timing (AIT), with several variables such as engine speed (RPM), fuel-air equivalence ratio (0s), spark timing (0s), compression ratio (rc), and intake pressure (Pint), using the design of experiments tools to assess the factors impact. The Central Composite Design indicates that RPM and 0 were the most important SACI factors since they influence all engine performance parameters. The Pint was significant in three performance parameters (Nth, IMEP and Tavg), as was 0s (NOx, Tavg and AIT). The rc, however, was relevant in only one of them (AIT). Furthermore, a Univariate Analysis (UA) was done to compare Spark-Ignition (SI) and SACI engines. The results show that SACI engines tend to be around 9% more efficient, NOx emissions drop notably, more than 90%, IMEP presents an increase of 76%, and Tavg decreases 200-300 K.
25

PHYSICS-BASED DIESEL ENGINE MODEL DEVELOPMENT CALIBRATION AND VALIDATION FOR ACCURATE CYLINDER PARAMETERS AND NOX PREDICTION

Vaibhav Kailas Ahire (10716315) 10 May 2021 (has links)
<p>Stringent regulatory requirements and modern diesel engine technologies have engaged automotive manufacturers and researchers in accurately predicting and controlling diesel engine-out emissions. As a result, engine control systems have become more complex and opaquer, increasing the development time and costs. To address this challenge, Model-based control methods are an effective way to deal with the criticality of the system study and controls. And physics-based combustion engine modeling is a key to achieve it. This thesis focuses on development and validation of a physics-based model for both engine and emissions using model-based design tools from MATLAB & Simulink. Engine model equipped with exhaust gas circulation and variable geometry turbine is adopted from the previously done work which was then integrated with the combustion and emission model that predicts the heat release rates and NO<sub>x </sub>emission from engine. Combustion model is designed based on the mass fraction burnt from CA10 to CA90 and then NO<sub>x </sub>predicted using the extended Zeldovich mechanism. The engine models are tuned for both steady state and dynamics test points to account for engine operating range from the performance data. Various engine and combustion parameters are estimated using parameter estimation toolbox from MATLAB and Simulink by applying least squared solver to minimize the error between measured and estimated variables. This model is validated against the virtual engine model developed in GT-power for Cummins 6.7L turbo diesel engine. To account the harmonization of the testing cycles to save engine development time globally, a world harmonized stationary cycle (WHSC) is used for the validation. Sub-systems are validated individually as well as in loop with a complete model for WHSC. Engine model validation showed promising accuracy of more than 88.4 percent in average for the desired parameters required for the NO<sub>x </sub>prediction. NO<sub>x</sub> estimation is accurate for the cycle except warm up and cool down phase. However, NO<sub>x </sub>prediction during these phases is limited due to actual NO<sub>x </sub>measured data for tuning the model for real time NO<sub>x </sub>estimation. Results are summarized at the end to compare the trend of NO<sub>x </sub>estimation from the developed combustion and emission model to show the accuracy of in-cylinder parameters and required for the NO<sub>x</sub> estimation. </p>
26

Improvements in Engine Performance Simulations and Integrated Engine Thermal Modeling

Aishwarya Vinod Ponkshe (16648650) 26 July 2023 (has links)
<p>One of the major challenges in the field of internal combustion engines is keeping up with the advancements in electrification and hybridization. Automakers are striving to design environment – friendly and highly efficient engines to meet stringent emission standards worldwide. Improving engine efficiency and reducing heat losses are critical aspects of this development. Therefore, accurate heat transfer prediction capabilities play a vital role in engine design process. Current methods rely on computationally intensive 3D numerical analyses, there is a growing interest in reliable simplified models. </p> <p>In this study, a 1D diesel engine model featuring predictive combustion was integrated with a detailed finite element thermal primitive based on the 3D meshing feature available in GT Suite. Coolant and oil hydraulic circuits were incorporated in the model. The model proves to be an effective means to assess the impact on heat rejection and engine heat distribution given by an engine calibration and operating conditions. </p> <p>This work also contributes to the advancement of virtual IC engine development methods by focusing on the design and tuning of complex engine system models using GT Power for accurate prediction of engine performance. The current processes in engine simulations are assessed to identify sources of errors and opportunities for improvements. The methods discussed in this work include isolated sub system level calibration and model evolution specifically address the issue of identifying noise factors and issues in smaller parts. Additionally, the study aims on improving the model’s trustworthiness by computing 1st law sanity checks, replicating real-life compressor map calculations and refining GT’s existing global convergence criteria. </p>

Page generated in 0.0568 seconds