• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 84
  • 84
  • 45
  • 35
  • 33
  • 20
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 13
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Data Driven Energy Efficiency of Ships

Taspinar, Tarik January 2022 (has links)
Decreasing the fuel consumption and thus greenhouse gas emissions of vessels has emerged as a critical topic for both ship operators and policy makers in recent years. The speed of vessels has long been recognized to have highest impact on fuel consumption. The solution suggestions like "speed optimization" and "speed reduction" are ongoing discussion topics for International Maritime Organization. The aim of this study are to develop a speed optimization model using time-constrained genetic algorithms (GA). Subsequent to this, this paper also presents the application of machine learning (ML) regression methods in setting up a model with the aim of predicting the fuel consumption of vessels. Local outlier factor algorithm is used to eliminate outlier in prediction features. In boosting and tree-based regression prediction methods, the overfitting problem is observed after hyperparameter tuning. Early stopping technique is applied for overfitted models.In this study, speed is also found as the most important feature for fuel consumption prediction models. On the other hand, GA evaluation results showed that random modifications in default speed profile can increase GA performance and thus fuel savings more than constant speed limits during voyages. The results of GA also indicate that using high crossover rates and low mutations rates can increase fuel saving.Further research is recommended to include fuel and bunker prices to determine more accurate fuel efficiency.
72

Ensembles of Single Image Super-Resolution Generative Adversarial Networks / Ensembler av generative adversarial networks för superupplösning av bilder

Castillo Araújo, Victor January 2021 (has links)
Generative Adversarial Networks have been used to obtain state-of-the-art results for low-level computer vision tasks like single image super-resolution, however, they are notoriously difficult to train due to the instability related to the competing minimax framework. Additionally, traditional ensembling mechanisms cannot be effectively applied with these types of networks due to the resources they require at inference time and the complexity of their architectures. In this thesis an alternative method to create ensembles of individual, more stable and easier to train, models by using interpolations in the parameter space of the models is found to produce better results than those of the initial individual models when evaluated using perceptual metrics as a proxy of human judges. This method can be used as a framework to train GANs with competitive perceptual results in comparison to state-of-the-art alternatives. / Generative Adversarial Networks (GANs) har använts för att uppnå state-of-the- art resultat för grundläggande bildanalys uppgifter, som generering av högupplösta bilder från bilder med låg upplösning, men de är notoriskt svåra att träna på grund av instabiliteten relaterad till det konkurrerande minimax-ramverket. Dessutom kan traditionella mekanismer för att generera ensembler inte tillämpas effektivt med dessa typer av nätverk på grund av de resurser de behöver vid inferenstid och deras arkitekturs komplexitet. I det här projektet har en alternativ metod för att samla enskilda, mer stabila och modeller som är lättare att träna genom interpolation i parameterrymden visat sig ge bättre perceptuella resultat än de ursprungliga enskilda modellerna och denna metod kan användas som ett ramverk för att träna GAN med konkurrenskraftig perceptuell prestanda jämfört med toppmodern teknik.
73

[pt] CONJUNTOS ONLINE PARA APRENDIZADO POR REFORÇO PROFUNDO EM ESPAÇOS DE AÇÃO CONTÍNUA / [en] ONLINE ENSEMBLES FOR DEEP REINFORCEMENT LEARNING IN CONTINUOUS ACTION SPACES

RENATA GARCIA OLIVEIRA 01 February 2022 (has links)
[pt] Este trabalho busca usar o comitê de algoritmos de aprendizado por reforço profundo (deep reinforcement learning) sob uma nova perspectiva. Na literatura, a técnica de comitê é utilizada para melhorar o desempenho, mas, pela primeira vez, esta pesquisa visa utilizar comitê para minimizar a dependência do desempenho de aprendizagem por reforço profundo no ajuste fino de hiperparâmetros, além de tornar o aprendizado mais preciso e robusto. Duas abordagens são pesquisadas; uma considera puramente a agregação de ação, enquanto que a outra também leva em consideração as funções de valor. Na primeira abordagem, é criada uma estrutura de aprendizado online com base no histórico de escolha de ação contínua do comitê com o objetivo de integrar de forma flexível diferentes métodos de ponderação e agregação para as ações dos agentes. Em essência, a estrutura usa o desempenho passado para combinar apenas as ações das melhores políticas. Na segunda abordagem, as políticas são avaliadas usando seu desempenho esperado conforme estimado por suas funções de valor. Especificamente, ponderamos as funções de valor do comitê por sua acurácia esperada, calculada pelo erro da diferença temporal. As funções de valor com menor erro têm maior peso. Para medir a influência do esforço de ajuste do hiperparâmetro, grupos que consistem em uma mistura de diferentes quantidades de algoritmos bem e mal parametrizados foram criados. Para avaliar os métodos, ambientes clássicos como o pêndulo invertido, cart pole e cart pole duplo são usados como benchmarks. Na validação, os ambientes de simulação Half Cheetah v2, um robô bípede, e o Swimmer v2 apresentaram resultados superiores e consistentes demonstrando a capacidade da técnica de comitê em minimizar o esforço necessário para ajustar os hiperparâmetros dos algoritmos. / [en] This work seeks to use ensembles of deep reinforcement learning algorithms from a new perspective. In the literature, the ensemble technique is used to improve performance, but, for the first time, this research aims to use ensembles to minimize the dependence of deep reinforcement learning performance on hyperparameter fine-tuning, in addition to making it more precise and robust. Two approaches are researched; one considers pure action aggregation, while the other also takes the value functions into account. In the first approach, an online learning framework based on the ensemble s continuous action choice history is created, aiming to flexibly integrate different scoring and aggregation methods for the agents actions. In essence, the framework uses past performance to only combine the best policies actions. In the second approach, the policies are evaluated using their expected performance as estimated by their value functions. Specifically, we weigh the ensemble s value functions by their expected accuracy as calculated by the temporal difference error. Value functions with lower error have higher weight. To measure the influence on the hyperparameter tuning effort, groups consisting of a mix of different amounts of well and poorly parameterized algorithms were created. To evaluate the methods, classic environments such as the inverted pendulum, cart pole and double cart pole are used as benchmarks. In validation, the Half Cheetah v2, a biped robot, and Swimmer v2 simulation environments showed superior and consistent results demonstrating the ability of the ensemble technique to minimize the effort needed to tune the the algorithms.
74

Shoppin’ in the Rain : An Evaluation of the Usefulness of Weather-Based Features for an ML Ranking Model in the Setting of Children’s Clothing Online Retailing / Handla i regnet : En utvärdering av användbarheten av väderbaserade variabler för en ML-rankningsmodell inom onlineförsäljning av barnkläder

Lorentz, Isac January 2023 (has links)
Online shopping offers numerous benefits, but large product catalogs make it difficult for shoppers to understand the existence and characteristics of every item for sale. To simplify the decision-making process, online retailers use ranking models to recommend products relevant to each individual user. Contextual user data, such as location, time, or local weather conditions, can serve as valuable features for ranking models, enabling personalized real-time recommendations. Little research has been published on the usefulness of weather-based features for ranking models in online clothing retailing, which makes additional research into this topic worthwhile. Using Swedish sales and customer data from Babyshop, an online retailer of children’s fashion, this study examined possible correlations between local weather data and sales. This was done by comparing differences in daily weather and differences in daily shares of sold items per clothing category for two cities: Stockholm and Göteborg. With Malmö as an additional city, historical observational weather data from one location each in the three cities Stockholm, Göteborg, and Malmö was then featurized and used along with the customers’ postal towns, sales features, and sales trend features to train and evaluate the ranking relevancy of a gradient boosted decision trees learning to rank LightGBM ranking model with weather features. The ranking relevancy was compared against a LightGBM baseline that omitted the weather features and a naive baseline: a popularity-based ranker. Several possible correlations between a clothing category such as shorts, rainwear, shell jackets, winter wear, and a weather variable such as feels-like temperature, solar energy, wind speed, precipitation, snow, and snow depth were found. Evaluation of the ranking relevancy was done using the mean reciprocal rank and the mean average precision @ 10 on a small dataset consisting only of customer data from the postal towns Stockholm, Göteborg, and Malmö and also on a larger dataset where customers in postal towns from larger geographical areas had their home locations approximated as Stockholm, Göteborg or Malmö. The LightGBM rankers beat the naive baseline in three out of four configurations, and the ranker with weather features outperformed the LightGBM baseline by 1.1 to 2.2 percent across all configurations. The findings can potentially help online clothing retailers create more relevant product recommendations. / Internethandel erbjuder flera fördelar, men stora produktsortiment gör det svårt för konsumenter att känna till existensen av och egenskaperna hos alla produkter som saluförs. För att förenkla beslutsprocessen så använder internethandlare rankningsmodeller för att rekommendera relevanta produkter till varje enskild användare. Kontextuell användardata såsom tid på dygnet, användarens plats eller lokalt väder kan vara värdefulla variabler för rankningsmodeller då det möjliggör personaliserade realtidsrekommendationer. Det finns inte mycket publicerad forskning inom nyttan av väderbaserade variabler för produktrekommendationssystem inom internethandel av kläder, vilket gör ytterligare studier inom detta område intressant. Med hjälp av svensk försäljnings- och kunddata från Babyshop, en internethandel för barnkläder så undersökte denna studie möjliga korrelationer mellan lokal väderdata och försäljning. Detta gjordes genom att jämföra skillnaderna i dagligt väder och skillnaderna i dagliga andelar av sålda artiklar per klädeskategori för två städer: Stockholm och Göteborg. Med Malmö som ytterligare en stad så gjordes historiska metereologiska observationer från en plats var i Stockholm, Göteborg och Malmö till variabler och användes tillsammans med kundernas postorter, försäljningsvariabler och variabler för försäljningstrender för att träna och utvärdera rankningsrelevansen hos en gradient-boosted decision trees learning to rank LightGBM rankningsmodell med vädervariabler. Rankningsrelevansen jämfördes mot en LightGBM baslinjesmodel som saknade vädervariabler samt en naiv baslinje: en popularitetsbaserad rankningsmodell. Flera möjliga korrelationer mellan en klädeskategori som shorts, regnkläder, skaljackor, vinterkläder och och en daglig vädervariabel som känns-som-temperatur, solenergi, vindhastighet, nederbörd, snö och snödjup upptäcktes. Utvärderingen av rankingsrelevansen utfördes med mean reciprocal rank och mean average precision @ 10 på ett mindre dataset som bestod endast av kunddata från postorterna Stockholm, Göteborg och Malmö och även på ett större dataset där kunder med postorter från större geografiska områden fick sina hemorter approximerade som Stockholm, Göteborg eller Malmö. LigthGBM-rankningsmodellerna slog den naiva baslinjen i tre av fyra konfigurationer och rankningsmodellen med vädervariabler slog LightGBM baslinjen med 1.1 till 2.2 procent i alla konfigurationer. Resultaten kan potentiellt hjälpa internethandlare inom mode att skapa bättre produktrekommendationssystem.
75

Optimizing Biomarkers From an Ensemble Learning Pipeline

Kuntala, Prashant Kumar January 2017 (has links)
No description available.
76

Machine Learning Modeling of Polymer Coating Formulations: Benchmark of Feature Representation Schemes

Evbarunegbe, Nelson I 14 November 2023 (has links) (PDF)
Polymer coatings offer a wide range of benefits across various industries, playing a crucial role in product protection and extension of shelf life. However, formulating them can be a non-trivial task given the multitude of variables and factors involved in the production process, rendering it a complex, high-dimensional problem. To tackle this problem, machine learning (ML) has emerged as a promising tool, showing considerable potential in enhancing various polymer and chemistry-based applications, particularly those dealing with high dimensional complexities. Our research aims to develop a physics-guided ML approach to facilitate the formulations of polymer coatings. As the first step, this project focuses on finding machine-readable feature representation techniques most suitable for encoding formulation ingredients. Utilizing two polymer-informatics datasets, one encompassing a large set of 700,000 common homopolymers including epoxies and polyurethanes as coating base materials while the other a relatively small set of 1000 data points of epoxy-diluent formulations, four featurization schemes to represent polymer coating molecules were benchmarked. They include the molecular access system, the extended connectivity fingerprint, molecular graph-based chemical graph network, and graph convolutional network (MG-GCN) embeddings. These representation schemes were used with ensemble models to predict molecular properties including topological surface area and viscosity. The results show that the combination of MG-GCN and ensemble models such as the extreme boosting machine and random forest models achieved the best overall performance, with coefficient of determination (r2) values of 0.74 in topological surface area and 0.84 in viscosity, which compare favorably with existing techniques. These results lay the foundation for using ML with physical modeling to expedite the development of polymer coating formulations.
77

Using Satellite Images And Self-supervised Deep Learning To Detect Water Hidden Under Vegetation / Använda satellitbilder och Självövervakad Deep Learning Till Upptäck vatten gömt under Vegetation

Iakovidis, Ioannis January 2024 (has links)
In recent years the wide availability of high-resolution satellite images has made the remote monitoring of water resources all over the world possible. While the detection of open water from satellite images is relatively easy, a significant percentage of the water extent of wetlands is covered by vegetation. Convolutional Neural Networks have shown great success in the task of detecting wetlands in satellite images. However, these models require large amounts of manually annotated satellite images, which are slow and expensive to produce. In this paper we use self-supervised training methods to train a Convolutional Neural Network to detect water from satellite images without the use of annotated data. We use a combination of deep clustering and negative sampling based on the paper ”Unsupervised Single-Scene Semantic Segmentation for Earth Observation”, and we expand the paper by changing the clustering loss, the model architecture and implementing an ensemble model. Our final ensemble of self-supervised models outperforms a single supervised model, showing the power of self-supervision. / Under de senaste åren har den breda tillgången på högupplösta satellitbilder möjliggjort fjärrövervakning av vattenresurser över hela världen. Även om det är relativt enkelt att upptäcka öppet vatten från satellitbilder, täcks en betydande andel av våtmarkernas vattenutbredning av vegetation. Lyckligtvis kan radarsignaler tränga igenom vegetation, vilket gör det möjligt för oss att upptäcka vatten gömt under vegetation från satellitradarbilder. Under de senaste åren har Convolutional Neural Networks visat stor framgång i denna uppgift. Tyvärr kräver dessa modeller stora mängder manuellt annoterade satellitbilder, vilket är långsamt och dyrt att producera. Självövervakad inlärning är ett område inom maskininlärning som syftar till att träna modeller utan användning av annoterade data. I den här artikeln använder vi självövervakad träningsmetoder för att träna en Convolutional Neural Network-baserad modell för att detektera vatten från satellitbilder utan användning av annoterade data. Vi använder en kombination av djup klustring och kontrastivt lärande baserat på artikeln ”Unsupervised Single-Scene Semantic Segmentation for Earth Observation”. Dessutom utökar vi uppsatsen genom att modifiera klustringsförlusten och modellarkitekturen som används. Efter att ha observerat hög varians i våra modellers prestanda implementerade vi också en ensemblevariant av vår modell för att få mer konsekventa resultat. Vår slutliga ensemble av självövervakade modeller överträffar en enda övervakad modell, vilket visar kraften i självövervakning.
78

Predictive Models for Coronary Heart Disease Prognosis using Ensemble Learning : master's thesis / Прогностические модели для прогнозирования ишемической болезни сердца с использованием коллективного обучения

Шах, Брахим, Shah, Brahim January 2024 (has links)
This thesis investigates the application of ensemble learning techniques in developing predictive models for coronary heart disease prognosis, aiming to enhance diagnostic capabilities and improve patient outcomes in cardiovascular medicine. By leveraging advanced computational methods and machine learning algorithms, the study focuses on automating the detection of myocardial infarction and heart conduction disorders using a deep learning model trained on ECG signals from a diverse dataset. The research methodology involves a systematic review of highly relevant papers, exclusion criteria to ensure the specificity of the study, and a search process in reputable academic libraries. Through a comparative analysis of selected papers and an in-depth exploration of machine learning approaches, the thesis aims to contribute to the advancement of predictive modeling techniques in cardiology. The findings of this research have the potential to significantly impact the field of cardiovascular care by providing more accurate prognostic tools for coronary heart disease management. / В данной работе исследуется применение методов коллективного обучения при разработке прогностических моделей для прогнозирования ишемической болезни сердца с целью расширения диагностических возможностей и улучшения результатов лечения пациентов в сердечно-сосудистой медицине. Используя передовые вычислительные методы и алгоритмы машинного обучения, исследование направлено на автоматизацию выявления инфаркта миокарда и нарушений сердечной проводимости с использованием модели глубокого обучения, обученной на основе сигналов ЭКГ из различных наборов данных. Методология исследования включает систематический обзор наиболее значимых статей, критерии исключения для обеспечения специфичности исследования и процесс поиска в авторитетных академических библиотеках. Благодаря сравнительному анализу избранных работ и углубленному изучению подходов к машинному обучению, диссертация призвана внести вклад в развитие методов прогностического моделирования в кардиологии. Результаты этого исследования могут оказать существенное влияние на сферу сердечно-сосудистой помощи, предоставив более точные инструменты прогнозирования для лечения ишемической болезни сердца.
79

A scalable evolutionary learning classifier system for knowledge discovery in stream data mining

Dam, Hai Huong, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2008 (has links)
Data mining (DM) is the process of finding patterns and relationships in databases. The breakthrough in computer technologies triggered a massive growth in data collected and maintained by organisations. In many applications, these data arrive continuously in large volumes as a sequence of instances known as a data stream. Mining these data is known as stream data mining. Due to the large amount of data arriving in a data stream, each record is normally expected to be processed only once. Moreover, this process can be carried out on different sites in the organisation simultaneously making the problem distributed in nature. Distributed stream data mining poses many challenges to the data mining community including scalability and coping with changes in the underlying concept over time. In this thesis, the author hypothesizes that learning classifier systems (LCSs) - a class of classification algorithms - have the potential to work efficiently in distributed stream data mining. LCSs are an incremental learner, and being evolutionary based they are inherently adaptive. However, they suffer from two main drawbacks that hinder their use as fast data mining algorithms. First, they require a large population size, which slows down the processing of arriving instances. Second, they require a large number of parameter settings, some of them are very sensitive to the nature of the learning problem. As a result, it becomes difficult to choose a right setup for totally unknown problems. The aim of this thesis is to attack these two problems in LCS, with a specific focus on UCS - a supervised evolutionary learning classifier system. UCS is chosen as it has been tested extensively on classification tasks and it is the supervised version of XCS, a state of the art LCS. In this thesis, the architectural design for a distributed stream data mining system will be first introduced. The problems that UCS should face in a distributed data stream task are confirmed through a large number of experiments with UCS and the proposed architectural design. To overcome the problem of large population sizes, the idea of using a Neural Network to represent the action in UCS is proposed. This new system - called NLCS { was validated experimentally using a small fixed population size and has shown a large reduction in the population size needed to learn the underlying concept in the data. An adaptive version of NLCS called ANCS is then introduced. The adaptive version dynamically controls the population size of NLCS. A comprehensive analysis of the behaviour of ANCS revealed interesting patterns in the behaviour of the parameters, which motivated an ensemble version of the algorithm with 9 nodes, each using a different parameter setting. In total they cover all patterns of behaviour noticed in the system. A voting gate is used for the ensemble. The resultant ensemble does not require any parameter setting, and showed better performance on all datasets tested. The thesis concludes with testing the ANCS system in the architectural design for distributed environments proposed earlier. The contributions of the thesis are: (1) reducing the UCS population size by an order of magnitude using a neural representation; (2) introducing a mechanism for adapting the population size; (3) proposing an ensemble method that does not require parameter setting; and primarily (4) showing that the proposed LCS can work efficiently for distributed stream data mining tasks.
80

A scalable evolutionary learning classifier system for knowledge discovery in stream data mining

Dam, Hai Huong, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2008 (has links)
Data mining (DM) is the process of finding patterns and relationships in databases. The breakthrough in computer technologies triggered a massive growth in data collected and maintained by organisations. In many applications, these data arrive continuously in large volumes as a sequence of instances known as a data stream. Mining these data is known as stream data mining. Due to the large amount of data arriving in a data stream, each record is normally expected to be processed only once. Moreover, this process can be carried out on different sites in the organisation simultaneously making the problem distributed in nature. Distributed stream data mining poses many challenges to the data mining community including scalability and coping with changes in the underlying concept over time. In this thesis, the author hypothesizes that learning classifier systems (LCSs) - a class of classification algorithms - have the potential to work efficiently in distributed stream data mining. LCSs are an incremental learner, and being evolutionary based they are inherently adaptive. However, they suffer from two main drawbacks that hinder their use as fast data mining algorithms. First, they require a large population size, which slows down the processing of arriving instances. Second, they require a large number of parameter settings, some of them are very sensitive to the nature of the learning problem. As a result, it becomes difficult to choose a right setup for totally unknown problems. The aim of this thesis is to attack these two problems in LCS, with a specific focus on UCS - a supervised evolutionary learning classifier system. UCS is chosen as it has been tested extensively on classification tasks and it is the supervised version of XCS, a state of the art LCS. In this thesis, the architectural design for a distributed stream data mining system will be first introduced. The problems that UCS should face in a distributed data stream task are confirmed through a large number of experiments with UCS and the proposed architectural design. To overcome the problem of large population sizes, the idea of using a Neural Network to represent the action in UCS is proposed. This new system - called NLCS { was validated experimentally using a small fixed population size and has shown a large reduction in the population size needed to learn the underlying concept in the data. An adaptive version of NLCS called ANCS is then introduced. The adaptive version dynamically controls the population size of NLCS. A comprehensive analysis of the behaviour of ANCS revealed interesting patterns in the behaviour of the parameters, which motivated an ensemble version of the algorithm with 9 nodes, each using a different parameter setting. In total they cover all patterns of behaviour noticed in the system. A voting gate is used for the ensemble. The resultant ensemble does not require any parameter setting, and showed better performance on all datasets tested. The thesis concludes with testing the ANCS system in the architectural design for distributed environments proposed earlier. The contributions of the thesis are: (1) reducing the UCS population size by an order of magnitude using a neural representation; (2) introducing a mechanism for adapting the population size; (3) proposing an ensemble method that does not require parameter setting; and primarily (4) showing that the proposed LCS can work efficiently for distributed stream data mining tasks.

Page generated in 0.0411 seconds