• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 4
  • 1
  • Tagged with
  • 53
  • 53
  • 27
  • 23
  • 23
  • 17
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interpretation, Verification and Privacy Techniques for Improving the Trustworthiness of Neural Networks

Dethise, Arnaud 22 March 2023 (has links)
Neural Networks are powerful tools used in Machine Learning to solve complex problems across many domains, including biological classification, self-driving cars, and automated management of distributed systems. However, practitioners' trust in Neural Network models is limited by their inability to answer important questions about their behavior, such as whether they will perform correctly or if they can be entrusted with private data. One major issue with Neural Networks is their "black-box" nature, which makes it challenging to inspect the trained parameters or to understand the learned function. To address this issue, this thesis proposes several new ways to increase the trustworthiness of Neural Network models. The first approach focuses specifically on Piecewise Linear Neural Networks, a popular flavor of Neural Networks used to tackle many practical problems. The thesis explores several different techniques to extract the weights of trained networks efficiently and use them to verify and understand the behavior of the models. The second approach shows how strengthening the training algorithms can provide guarantees that are theoretically proven to hold even for the black-box model. The first part of the thesis identifies errors that can exist in trained Neural Networks, highlighting the importance of domain knowledge and the pitfalls to avoid with trained models. The second part aims to verify the outputs and decisions of the model by adapting the technique of Mixed Integer Linear Programming to efficiently explore the possible states of the Neural Network and verify properties of its outputs. The third part extends the Linear Programming technique to explain the behavior of a Piecewise Linear Neural Network by breaking it down into its linear components, generating model explanations that are both continuous on the input features and without approximations. Finally, the thesis addresses privacy concerns by using Trusted Execution and Differential Privacy during the training process. The techniques proposed in this thesis provide strong, theoretically provable guarantees about Neural Networks, despite their black-box nature, and enable practitioners to verify, extend, and protect the privacy of expert domain knowledge. By improving the trustworthiness of models, these techniques make Neural Networks more likely to be deployed in real-world applications.
12

Under the Guise of Machine Neutrality : Machine Learning Uncertainty Exploration as Design Material to Identify Gender Bias in AI Systems

Veloso, Gelson January 2022 (has links)
Structural gendered inequality permeates intelligent systems, shaping everyday lives and reinforcing gender oppression. This study investigates how uncertainty, as an inherent characteristic of Machine Learning (ML) models, can be translated as a design material to highlight gender bias in Artificial Intelligence (AI) systems. It follows an HCI feminist methodology with a threefold horizon: the re-conceptualisation of the design space that considers human and non-human perspectives (Giaccardi & Redström, 2020); the exploration of ML uncertainty as design materiality (Benjamin et al., 2020) to underscore imbued gender inequality in intelligent systems; and the disputed relations of ML uncertainty as materiality with unpredictability in Explainable AI systems, more specifically Graspable AI (Ghajargar et al., 2021, 2022). As a critical exploratory process, the knowledge contribution is the development of a set of guidelines for the design of better and more equal ML systems.
13

Famtile: An Algorithm For Learning High-level Tactical Behavior From Observation

Stensrud, Brian 01 January 2005 (has links)
This research focuses on the learning of a class of behaviors defined as high-level behaviors. High-level behaviors are defined here as behaviors that can be executed using a sequence of identifiable behaviors. Represented by low-level contexts, these behaviors are known a priori to learning and can be modeled separately by a knowledge engineer. The learning task, which is achieved by observing an expert within simulation, then becomes the identification and representation of the low-level context sequence executed by the expert. To learn this sequence, this research proposes FAMTILE - the Fuzzy ARTMAP / Template-Based Interpretation Learning Engine. This algorithm attempts to achieve this learning task by constructing rules that govern the low-level context transitions made by the expert. By combining these rules with models for these low-level context behaviors, it is hypothesized that an intelligent model for the expert can be created that can adequately model his behavior. To evaluate FAMTILE, four testing scenarios were developed that attempt to achieve three distinct evaluation goals: assessing the learning capabilities of Fuzzy ARTMAP, evaluating the ability of FAMTILE to correctly predict expert actions and context choices given an observation, and creating a model of the expert's behavior that can perform the high-level task at a comparable level of proficiency.
14

Enhancement of an Ad Reviewal Process through Interpretable Anomaly Detecting Machine Learning Models / Förbättring av en annonsgranskingsprocess genom tolkbara och avvikelsedetekterande maskinsinlärningsmodeller

Dahlgren, Eric January 2022 (has links)
Technological advancements made in recent decades in the fields of artificial intelligence (AI) and machine learning (ML) has lead to further automation of tasks previously performed by humans. Manually reviewing and assessing content uploaded to social media and marketplace platforms is one of said tasks that is both tedious and expensive to perform, and could possibly be automated through ML based systems. When introducing ML model predictions to a human decision making process, interpretability and explainability of models has been proven to be important factors for humans to trust in individual sample predictions. This thesis project aims to explore the performance of interpretable ML models used together with humans in an ad review process for a rental marketplace platform. Utilizing the XGBoost framework and SHAP for interpretable ML, a system was built with the ability to score an individual ad and explain the prediction with human readable sentences based on feature importance. The model reached an ROC AUC score of 0.90 and an Average Precision score of 0.64 on a held out test set. An end user survey was conducted which indicated some trust in the model and an appreciation for the local prediction explanations, but low general impact and helpfulness. While most related work focus on model performance, this thesis contributes with a smaller model usability study which can provide grounds for utilizing interpretable ML software in any manual decision making process.
15

<b>Deep Neural Network Structural Vulnerabilities And Remedial Measures</b>

Yitao Li (9148706) 02 December 2023 (has links)
<p dir="ltr">In the realm of deep learning and neural networks, there has been substantial advancement, but the persistent DNN vulnerability to adversarial attacks has prompted the search for more efficient defense strategies. Unfortunately, this becomes an arms race. Stronger attacks are being develops, while more sophisticated defense strategies are being proposed, which either require modifying the model's structure or incurring significant computational costs during training. The first part of the work makes a significant progress towards breaking this arms race. Let’s consider natural images, where all the feature values are discrete. Our proposed metrics are able to discover all the vulnerabilities surrounding a given natural image. Given sufficient computation resource, we are able to discover all the adversarial examples given one clean natural image, eliminating the need to develop new attacks. For remedial measures, our approach is to introduce a random factor into DNN classification process. Furthermore, our approach can be combined with existing defense strategy, such as adversarial training, to further improve performance.</p>
16

Unsupervised Online Anomaly Detection in Multivariate Time-Series / Oövervakad online-avvikelsedetektering i flerdimensionella tidsserier

Segerholm, Ludvig January 2023 (has links)
This research aims to identify a method for unsupervised online anomaly detection in multivariate time series in dynamic systems in general and on the case study of Devwards IoT-system in particular. A requirement of the solution is its explainability, online learning and low computational expense. A comprehensive literature review was conducted, leading to the experimentation and analysis of various anomaly detection approaches. Of the methods evaluated, a singular recurrent neural network autoencoder emerged as the most promising, emphasizing a simple model structure that encourages stable performance with consistent outputs, regardless of the average output. While other approaches such as Hierarchical Temporal Memory models and an ensemble strategy of adaptive model pooling yielded suboptimal results. A modified version of the Residual Explainer method for enhancing explainability in autoencoders for online scenarios showed promising outcomes. The use of Mahalanobis distance for anomaly detection was explored. Feature extraction and it's implications in the context of the proposed approach is explored. Conclusively, a single, streamlined recurrent neural network appears to be the superior approach for this application, though further investigation into online learning methods is warranted. The research contributes results into the field of unsupervised online anomaly detection in multivariate time series and contributes to the Residual Explainer method for online autoencoders. Additionally, it offers data on the ineffectiveness of the Mahalanobis distance in an online anomaly detection environment.
17

Leveraging Word Embeddings to Enrich Linguistics and Natural Language Understanding

Aljanaideh, Ahmad 22 July 2022 (has links)
No description available.
18

Human-AI Sensemaking with Semantic Interaction and Deep Learning

Bian, Yali 07 March 2022 (has links)
Human-AI interaction can improve overall performance, exceeding the performance that either humans or AI could achieve separately, thus producing a whole greater than the sum of the parts. Visual analytics enables collaboration between humans and AI through interactive visual interfaces. Semantic interaction is a design methodology to enhance visual analytics systems for sensemaking tasks. It is widely applied for sensemaking in high-stakes domains such as intelligence analysis and academic research. However, existing semantic interaction systems support collaboration between humans and traditional machine learning models only; they do not apply state-of-the-art deep learning techniques. The contribution of this work is the effective integration of deep neural networks into visual analytics systems with semantic interaction. More specifically, I explore how to redesign the semantic interaction pipeline to enable collaboration between human and deep learning models for sensemaking tasks. First, I validate that semantic interaction systems with pre-trained deep learning better support sensemaking than existing semantic interaction systems with traditional machine learning. Second, I integrate interactive deep learning into the semantic interaction pipeline to enhance inference ability in capturing analysts' precise intents, thereby promoting sensemaking. Third, I add semantic explanation into the pipeline to interpret the interactively steered deep learning model. With a clear understanding of DL, analysts can make better decisions. Finally, I present a neural design of the semantic interaction pipeline to further boost collaboration between humans and deep learning for sensemaking. / Doctor of Philosophy / Human AI interaction can harness the separate strengths of human and machine intelligence to accomplish tasks neither can solve alone. Analysts are good at making high-level hypotheses and reasoning from their domain knowledge. AI models are better at data computation based on low-level input features. Successful human-AI interactions can perform real-world, high-stakes tasks, such as issuing medical diagnoses, making credit assessments, and determining cases of discrimination. Semantic interaction is a visual methodology providing intuitive communications between analysts and traditional machine learning models. It is commonly utilized to enhance visual analytics systems for sensemaking tasks, such as intelligence analysis and scientific research. The contribution of this work is to explore how to use semantic interaction to achieve collaboration between humans and state-of-the-art deep learning models for complex sensemaking tasks. To do this, I first evaluate the straightforward solution of integrating the pretrained deep learning model into the traditional semantic interaction pipeline. Results show that the deep learning representation matches human cognition better than hand engineering features via semantic interaction. Next, I look at methods for supporting semantic interaction systems with interactive and interpretable deep learning. The new pipeline provides effective communication between human and deep learning models. Interactive deep learning enables the system to better capture users' intents. Interpretable deep learning lets users have a clear understanding of models. Finally, I improve the pipeline to better support collaboration using a neural design. I hope this work can contribute to future designs for the human-in-the-loop analysis with deep learning and visual analytics techniques.
19

Which product description phrases affect sales forecasting? An explainable AI framework by integrating WaveNet neural network models with multiple regression

Chen, S., Ke, S., Han, S., Gupta, S., Sivarajah, Uthayasankar 03 September 2023 (has links)
Yes / The rapid rise of many e-commerce platforms for individual consumers has generated a large amount of text-based data, and thus researchers have begun to experiment with text mining techniques to extract information from the large amount of textual data to assist in sales forecasting. The existing literature focuses textual data on product reviews; however, consumer reviews are not something that companies can directly control, here we argue that textual product descriptions are also important determinants of consumer choice. We construct an artificial intelligence (AI) framework that combines text mining, WaveNet neural networks, multiple regression, and SHAP model to explain the impact of product descriptions on sales forecasting. Using data from nearly 200,000 sales records obtained from a cross-border e-commerce firm, an empirical study showed that the product description presented to customers can influence sales forecasting, and about 44% of the key phrases greatly affect sales forecasting results, the sales forecasting models that added key product description phrases had improved forecasting accuracy. This paper provides explainable results of sales forecasting, which can provide guidance for firms to design product descriptions with reference to the market demand reflected by these phrases, and adding these phrases to product descriptions can help win more customers. / The full-text of this article will be released for public view at the end of the publisher embargo on 24 Feb 2025.
20

Interpreting embedding models of knowledge bases. / Interpretando modelos de embedding de bases de conhecimento.

Arthur Colombini Gusmão 26 November 2018 (has links)
Knowledge bases are employed in a variety of applications, from natural language processing to semantic web search; alas, in practice, their usefulness is hurt by their incompleteness. To address this issue, several techniques aim at performing knowledge base completion, of which embedding models are efficient, attain state-of-the-art accuracy, and eliminate the need for feature engineering. However, embedding models predictions are notoriously hard to interpret. In this work, we propose model-agnostic methods that allow one to interpret embedding models by extracting weighted Horn rules from them. More specifically, we show how the so-called \"pedagogical techniques\", from the literature on neural networks, can be adapted to take into account the large-scale relational aspects of knowledge bases, and show experimentally their strengths and weaknesses. / Bases de conhecimento apresentam diversas aplicações, desde processamento de linguagem natural a pesquisa semântica da web; contudo, na prática, sua utilidade é prejudicada por não serem totalmente completas. Para solucionar esse problema, diversas técnicas focam em completar bases de conhecimento, das quais modelos de embedding são eficientes, atingem estado da arte em acurácia, e eliminam a necessidade de fazer-se engenharia de características dos dados de entrada. Entretanto, as predições dos modelos de embedding são notoriamente difíceis de serem interpretadas. Neste trabalho, propomos métodos agnósticos a modelo que permitem interpretar modelos de embedding através da extração de regras Horn ponderadas por pesos dos mesmos. Mais espeficicamente, mostramos como os chamados \"métodos pedagógicos\", da literatura de redes neurais, podem ser adaptados para lidar com os aspectos relacionais e de larga escala de bases de conhecimento, e mostramos experimentalmente seus pontos fortes e fracos.

Page generated in 0.0594 seconds