• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 23
  • 20
  • 13
  • 10
  • 7
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 191
  • 52
  • 49
  • 46
  • 33
  • 32
  • 31
  • 29
  • 29
  • 29
  • 29
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The Silicon Carbide Vacuum Field-Effect Transistor (VacFET)

Speer, Kevin M. 20 April 2011 (has links)
No description available.
82

Study of wide bandgap semiconductor nanowire field effect transistor and resonant tunneling device

Shao, Ye January 2015 (has links)
No description available.
83

Charge transport in organic multi-layer devices under electric and optical fields

Park, June Hyoung 17 July 2007 (has links)
No description available.
84

An Ion-Sensitive Field Effect Transistor And Ion-Selective Polymer Membrane For Continuous Potassium Monitoring

Le, Huy Van 01 March 2024 (has links) (PDF)
Ion sensitive field effect transistors (ISFETs) are semiconductor sensors that have the capability to determine the selected concentration of a specific ion in a solution. Most modern ISFETs utilize their ion selective properties for glucose monitors for diabetics. However, in this thesis, the ISFET fabricated is for the selective detection of K+. The goals of this thesis are to develop a functioning ion-selective polymer membrane, manufacture a working FET device, and implement the two aspects together into a working bench-top K+ selective ISFET device. Properties of a polymer composed of 33 wt.% polyvinyl chloride (PVC) 66 wt.% dioctyl sebacate (DOS) and 1 wt.% valinomycin applied to an ion-sensitive electrode (ISE) were investigated. The membrane generated a sensitivity value of -9.864E-08 Ω/log10(CK). Though this data set was affected by both the maximum resolution of the I-V curve tracing device and the thin-membrane effect. Selectivity tests following the IUPAC two-solution method in the presence of Na+ as the interfering ion, provided selectivity values of 0.228 and 0.443 with higher ratios of primary ion to interfering ion resulting in higher selectivity coefficients. Additionally, utilizing an illumination test, dielectric constants of 17.71 and 10.88 were calculated dependent on the amount of solvent used during formulation. Fabrication of the FET device also resulted in developments in metal contact materials, nitride film processing, and physical vapor deposition (PVD) processes. With further improvements, it is possible to fabricate a biocompatible, wearable K+-selective monitor for continuously testing dialysis patients.
85

New materials and processes for flexible nanoelectronics

Ingram, Ian David Victor January 2013 (has links)
Planar electronic devices represent an attractive approach towards roll-to-roll printed electronics without the need for the sequential, precisely aligned, patterning steps inherent in the fabrication of conventional ‘3D’ electronic devices. Self-switching diodes (SSDs) and in-plane-gate field-effect transistors (IPG-FETs) can be patterned using a single process into a substrate precoated with semiconductor.These devices function in depletion mode, requiring the semiconductor to be doped in order for the devices to function. To achieve this, a reliable and controllable method was developed for doping organic semiconducting polymers by the immersion of optimally deposited films in a solution of dopant. The process was shown to apply both semicrystalline and air-stable, amorphous materials indicating that the approach is broadly applicable to a wide range of organic semiconductors.Simultaneously with the development of the doping protocol specialised hot-embossing equipment was designed and constructed and a high-yielding method of patterning the structures of IPG-FETs and SSDs was arrived at. This method allowed for consistent and reliable patterning of features with a minimum line-width of 200nm.Following the development of these doping and patterning processes these were combined to fabricate controllably doped, functioning planar devices. SSDs showed true zero-threshold rectification behaviour with no observed breakdown in the reverse direction up to 100 V. IPG-FETs showed switching behaviour in response to an applied gate potential and were largely free of detectable gate leakage current, verifying the quality of the patterning process.Furthermore, high-performance semiconducting polymer PAAD was synthesised and characterised in field-effect transistors as steps towards its use in planar electronic devices. It was also shown that this material could be doped using the developed immersion doping protocol and that this protocol was compatible with top-gated device architectures and the use of fluoropolymer CYTOP as a dielectric.
86

Μελέτη και κατασκευή ηλεκτρονικού μετατροπέα ισχύος για την οδήγηση και τον έλεγχο κινητήρα τύπου DC brushless / Study and construction of a three phase inverter for driving and control of a DC brushless motor

Τσούμας, Ευάγγελος 13 October 2013 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται τη μελέτη, το σχεδιασμό, την πρσοομοίωση και την κατασκευή κυκλώματος για την οδήγηση και τον έλεγχο στροφών κινητήρα τύπου DC Brushless.Η εργασία αυτή εκπονήθηκε στο εργαστήριο Ηλεκτρομηχανικής Μετατροπής Ενέργειας του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών Υπολογιστών. Σκοπός της παρούσας εργασίας είναι η μελέτη και η κατασκευή κυκλώματος τριφασικού αντιστροφέα ισχύος για να επιτύχουμε οδήγηση και έλεγχο κινητήρα τύπου DC Brushless. Ο κινητήρας αυτού του τύπου είναι Σύγχρονος κινητήρας Μόνιμου Μαγνήτη. Για το λόγο αυτό το πρώτο πράγμα που μελετήθηκε στην παρούσα εργασία είναι κάποιες θεμελιώδεις ιδιότητες του μαγνητικού πεδίου, καθώς και τα χαρακτηριστικά των μαγνητικών υλικών που χρησιμοποιούνται σε τέτοιους τύπους κινητήρων. Στην συνέχεια αναλύονται οι κινητήρων Brushless DC ως προς την κατασκευή τους καθώς και τη λειτουργία τους. Παρατίθενται οι εξισώσεις που περιγράφουν τη λειτουργία τους και οι χαρακτηριστικές ροπής-ταχύτητας και επιπλέον γίνεται σύγκριση αυτών με κινητήρες άλλων τύπων. Ακολουθεί η περιγραφή της προσομοίωσης του συστήματος η οποία πραγματοποιήθηκε στο πρόγραμμα προσομοίωσης ηλεκτρικών κυκλωμάτων Simulink του Matlab. Αναλύεται η λογική στην οποία βασιστήκαμε για την προσομοίωση και παρατίθενται οι κυματομορφές της τάσης και του ρεύματος σε διάφορα σημεία του κυκλώματος. Έπειτα γίνεται μια θεωρητική ανάλυση του κυκλώματος του αντιστροφέα που κατασκευάστηκε καθώς και όλων των άλλων κυκλωμάτων και στοιχείων που απαιτήθηκαν για τη λειτουργία της διάταξης. Επιπλέον περιγράφεται η μέθοδος παλμοδότησης που χρησιμοποιήθηκε για την έναυση/σβέση των διακοπτικών στοιχείων ισχύος. Τέλος γίνεται αναλυτική παράθεση του τελικού κυκλώματος που κατασκευάστηκε. Προχωράμε με την περιγραφή των ιδιοτήτων και δυνατοτήτων του μικροελεγκτή που χρησιμοποιήθηκε στην πλακέτα μας, καθώς επίσης και με τη λογική που ακολουθήθηκε κατά τον προγραμματισμό του. Τέλος παραθέτονται τα αποτελέσματα των πειραμάτων και τα παλμογραφήματα που ελήφθησαν κατά τη διεξαγωγή τους. Γίνεται σχολιασμός των αποτελεσμάτων αυτών και αξιολόγηση της κατασκευής. / This thesis is focused in the study and development of a Drive System for a DC Brushless motor. This work was conducted in the Laboratory of Electromechanical Energy Conversion, at the department of Electrical and Computer Engineering, in the University of Patras, Greece. DC Brushless motors, have been used in the last years they are used in a number of applications. They combine all the benefits of a DC motor, such as their operation simplicity and their linear characteristics, avoiding the brushes and the necessary excitation of DC motors, making them a suitable choice for low and medium power applications. The main purpose of this project is the Study and Construction of a Three-Phase Voltage Source Inverter for the control of the performance of a DC Brushless Motor by the implementation of a Scalar control. This thesis began with the simulation of the motor, since it is necessary for the understanding of its dynamic behavior. Then an analysis on the design and construction of the required circuit boards is done. Finally the used microcontroller (dsPIC family) was studied thoroughly, before writing the necessary code(C & assembly) for open and closed loop control. Finally, measurements were taken for the open loop control system. Conclusions were made as far as the behavior of the motor and ways to optimize the control were discussed.
87

Impact of process parameter modification on poly(3-hexylthiophene) film morphology and charge transport

Lee, Jiho 13 January 2014 (has links)
Organic electronics based on π-conjugated semi-conductor raises new technology, such as organic film transistors, e-paper, and organic photovoltaic cells that can be implemented cost-effectively on large-area applications. Currently, the device performance is limited by low charge carrier mobility. Poly(3-hexylthiophene) (P3HT) and organic field effect transistors (OFET) is used as a model to investigate morphology of the organic film and corresponding electronic properties. In this thesis, processing parameters such as boiling points and solubility are controlled to impact the micro- and macro-morphology of the film to enhance the charge transport of the device. Alternative approach to improve ordering of polymer chains and increase in charge transport without post-treatment of P3HT solution is studied. The addition of high boiling good solvent to the relatively low boiling main solvent forms ordered packing of π-conjugated polymers during the deposition process. We show that addition of 1% of dichlorobenzene (DCB) to the chloroform based P3HT solution was sufficient to improve wetting and molecular structures of the film to increase carrier mobility. Systematic study of solvent-assisted re-annealing technique, which has potential application in OFET encapsulation and fabrication of top-contact OFET, is conducted to improve mobility of OFET, and, to suggest a cost-effective processing condition suitable for industrial application. Three process parameters: boiling point, polarity, and solubility are investigated to further understand the trend of film response to the solvent-assisted technique. We report the high boiling non-polar solvents with relatively high RED values promote highest improvement in molecular packing and formulate crystalline structure of the thin film, which increases the device performance.
88

Nanomaterials for Biological Applications: Drug Delivery and Bio-sensing

Ma, Hui 17 May 2013 (has links)
The idea of utilizing nanomaterials in bio-related applications has been extensively practiced during the recent decades. Magnetic nanoparticles (MPs), especially superparamagnetic iron oxide nanoparticles have been demonstrated as promising candidates for biomedicine. A protective coating process with biocompatible materials is commonly performed on MPs to further enhance their colloidal and chemical stability in the physiological environment. Mesoporous hollow silica is another class of important nanomaterials that are extensively studied in drug delivery area for their ability to carry significant amount of guest molecules and release in a controlled manner. In this study, different synthetic approaches that are able to produce hybrid nanomaterials, constituting both mesoporous hollow silica and magnetite nanoparticles, are described. In a two-step approach, pre-synthesized magnetite nanoparticles are either covalently conjugated to the surface of polystyrene beads and coated with silica or embedded/enclosed in the porous shell during a nanosized CaCO3 templated condensation of silica precursors, followed by acid dissolution to generate the hollow structure. It was demonstrated that the hollow interior is able to load large amount of hydrophobic drugs such as ibuprofen while the mesoporous shell is capable of prolonged drug. In order to simplify the fabrication procedure, a novel in-situ method is developed to coat silica surface with magnetite nanoparticles. By refluxing the iron precursor with mesoporous hollow silica nanospheres in polyamine/polyalcohol mixed media, one is able to directly form a high density layer of magnetite nanoparticles on silica surface during the synthesis, leaving reactive amine groups for further surface functionalization such as fluorescence conjugation. This approach provides a convenient synthesis for silica nanostructures with promising potential for drug delivery and multimodal imaging. In addition to nanoparticles, nanowires also benefit the research and development of instruments in clinical diagnosis. Semiconductive nanowires have demonstrated their advantage in the fabrication of lab-on-a-chip devices to detect many charge carrying molecules such as antibody and DNA. In our study, In2O3 and silicon nanowire based field effect transistors were fabricated through bottom-up and top-down approaches, respectively, for ultrasensitive bio- detection of toxins such as ricin. The specific binding and non-specific interaction of nanowires with antibodies were also investigated.
89

Nouvelles générations de structures en diamant dopé au bore par technique de delta-dopage pour l'électronique de puissance : croissance par CVD et caractérisation / New generations of boron-doped diamond structures by delta-doping technique for power electronics : CVD growth and characterization

Fiori, Alexandre 24 October 2012 (has links)
Dans ce projet de thèse, qui s'appuie sur l'optimisation d'un réacteur de croissance du diamant et la construction d'un prototype, nous avons démontré l'épitaxie par étapes de couches de diamant, orientées (100), lourdement dopées au bore sur des couches de dopage plus faible dans le même processus, sans arrêter le plasma. Plus original, nous avons démontré la situation inverse. Nous présentons aussi des croissances assez lentes pour l'épitaxie de films d'épaisseur nanométriques avec de grands sauts de dopage, appelé delta-dopage. L'accent a été porté sur le gain en raideur des interfaces. Nous démontrons la présence d'interfaces fortement abruptes, issues de gravures in-situ optimisées, par une analyse conjointe en spectrométrie de masse à ionisation secondaire et en microscopie électronique en transmission à balayage en champ sombre annulaire aux grands angles. Des super-réseaux de dopages abrupts montrent des pics satellites de diffraction X typiques de la super-période. / The aim of this PhD thesis was to better understand the boron delta-doping of diamond over building a new Microwave Plasma Chemical Vapour Deposition reactor prototype. We succeed to grow step by step heavy on low, and more original, low on heavy boron-doped layers of (100)-oriented diamond in the same process and without stopping the plasma. We also settled growth parameters for a growth rate slow enough to get nanometre-thick homoepitaxial films with boron doping jumps over several orders of magnitude, called delta-doping. We demonstrated the presence of super-sharp interfaces, after optimized in situ etching, by joint Secondary Ion Mass Spectrometry and Scanning Tunneling Electron Microscopy at High-Angle Annular Dark Field analysis. Finally superlattices with abrupt boron doping levels have been grown; they show satellite peaks of X-ray diffraction representative of a super-period.
90

Fabricação e estudo das propriedades de transporte de transistores de filmes finos orgânicos / Manufacturing and study of charge transport properties of organic thin film transistors

Maciel, Alexandre de Castro 26 October 2012 (has links)
A eletrônica digital desempenha papel essencial no desenvolvimento e manutenção dos padrões de vida em prática hoje no mundo. A peça fundamental para a criação desta era tecnológica é sem dúvidas o transistor. Com o advento de novos materiais, a busca por transistores que oferecem novas oportunidades de processamento e aplicação permitiu que uma nova área fosse criada: a eletrônica orgânica. Transistores de efeito de campo baseados em filmes finos de materiais orgânicos têm recebido grande atenção nas últimas décadas. Apresentamos um estudo experimental e teórico de transistores de efeito de campo a base de filmes finos orgânicos. Foram caracterizados transistores usando um derivado do pentaceno (TMTES-pentaceno) como camada ativa em um dispositivo feito sobre Si/SiO2. Mostramos que a inclusão do semicondutor orgânico em uma matriz polimérica isolante ajuda a manter a estabilidade termo mecânica do dispositivo. Foi desenvolvido um modelo que levasse em conta as resistências parasíticas para explicar o comportamento do transistor em função da temperatura. Também foram construídos e caracterizados transistores usando rr-P3HT como semicondutor e PMMA como isolantes. Apresentamos transistores do tipo Top-Gate e Bottom-Gate com mobilidade máxima de 7 x 10-3 cm2/V.s. Valores de razão ON/OFF de ~ 900 foram encontrados nos transistores otimizados. O comportamento dos transistores é analisado em função da temperatura e os modelos de aproximação de canal gradual e de Vissenberg-Matters foram aplicados para extração dos parâmetros de interesse. Por fim, apresentamos um modelo de corrente de canal baseado na resolução 2D numérica da equação de Poisson usando as idéias de Vissenberg-Matters para a concentração de cargas em função do potencial local. O modelo, embora ainda nos primeiros estágios de desenvolvimento, prevê a saturação da corrente nas curvas de saída simuladas sem limitações de regime de validade. / Digital electronics plays an essential role in the development and maintenance of living standards into practice in the world today. The cornerstone for the creation of this technological age is undoubtedly the transistor. With the advent of new materials, the search for transistors that offer new opportunities in processing and application allowed a new area to be created: the organic electronics. Field effect transistors based on organic thin films have received great attention in recent decades. We report an experimental and theoretical study of field effect transistors based on organic thin films. We characterized transistors manufactured using a derivative of pentacene (TMTES-pentacene) as the active layer in a device and using Si/SiO2 as gate and insulator. We show that the inclusion of the organic semiconductor in an insulating polymeric matrix helps to maintain the termo-mechanical stability of the device. A model was developed that take into account the parasitic resistances and to explain the behavior of the transistor as a function of temperature. We also present the manufacturing and characterization process of transistors using rr-P3HT as semiconductor and PMMA as insulator. We report Top-Gate and Bottom-Gate transistors with maximum mobility of 7 x 10-3 cm2/V.s. The maximun ON/OFF ratio of ~ 900 was found for the optimized transistors. The behavior of the transistors was analyzed as a function of temperature and both gradual channel approximation and Vissenberg-Matters models were applied for extracting the parameters. Finally, we present a channel current model based on the resolution of 2D numerical Poisson equation using the ideas of Vissenberg-Matters to the calculate the concentration of charges due to the local potential. The model, although still in the early stages of development, predicts the saturation current at output simulated curves with no limitation of regime validity.

Page generated in 0.0688 seconds