• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 621
  • 172
  • 81
  • 28
  • 18
  • 10
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1323
  • 1323
  • 1323
  • 487
  • 220
  • 154
  • 154
  • 146
  • 134
  • 126
  • 118
  • 118
  • 113
  • 98
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
721

Design Of A Multi-frequency Underwater Transducer Using Cylindrical Piezoelectric Elements

Yavuz, Siar Deniz 01 July 2011 (has links) (PDF)
In this thesis, numerical and experimental design of a multi-frequency underwater acoustic transducer with cylindrical piezoelectric ceramic tubes is studied. In the numerical design, the acoustic, mechanical and thermal performances of the transducer are investigated by means of finite element method (FEM) in ANSYS. The design of the transducer that meets the acoustic requirements is checked in terms of the mechanical and thermal performances. After the completion of the numerical design, the transducer is manufactured and some performance tests such as impedance test, hydrostatic pressure test and full-power operation test are applied to it. Finally, the results of the numerical and experimental design are compared. As a result, the design of an underwater acoustic transducer that operates at two frequency bands centered at about 30 and 60 kHz under a hydrostatic pressure of 30 bars is accomplished. This transducer also resist to a shock loading of 500g for 1 millisecond.
722

Multidisciplinary Design Of An Unmanned Aerial Vehicle Wing

Sakarya, Arzu 01 September 2011 (has links) (PDF)
In this thesis, the structural design, structural analysis and producibility analysis of an unmanned aerial vehicle wing were performed. Three different wing models, made of different materials, were designed. The wings were aluminum wing model and composite wing models / made of prepreg and wet lay-up. All wings have the same aerodynamic geometry and structural configuration under the same flight conditions. The structural designs of three wings were done by using Unigraphics NX. The finite element modeling of the wings were built by using MSC Patran package program. After the application of the loads on models, structural analyses were performed by MSC Nastran. Finally, the producibility analysis of prepreg wing model was conducted by using FiberSIM package program. The prepreg wing model was selected as optimum design with studies conducted in the study considering weight, producibility, cruise and gust stress and displacement conditions.
723

Structural And Aeroelastic Analyses Of A Composite Tactical Unmanned Air Vehicle

Ozozturk, Sedat 01 October 2011 (has links) (PDF)
In this thesis, computational aerodynamics, structural and aeroelastic analyses of the composite tactical unmanned air vehicle which is designed and manufactured in the Department of Aerospace Engineering are performed. Verification of the structural integrity of the air vehicle is shown at the minimum maneuvering and the dive speeds at the static limit loads which are calculated by the computational aerodynamics analysis of the full aircraft model. In the current work, aerodynamic loads are re-calculated for more accurately determined dive speed angle of attack in an effort to match the overall vertical pressure load more closely to the half of the aircraft weight at the positive load factor. Finite element models of the fuselage, wing and the vertical-horizontal tail plane are prepared including the filament wound boom connecting the wing and the tail plane. Structural analyses of the composite wing, vertical and horizontal tail plane are performed under the limit aerodynamic loads calculated at the corner points of the V-N diagram using the structural finite element model of the wing-tail plane combination only. Global finite element analysis of the wing-tail plane combination showed that composite and isotropic materials of the wing-tail plane combination have positive margins of safety. Woven carbon and E-glass fabric that was procured to be used for the serial production version of the airplane are characterized for the tensile properties by the tests. Comprehensive aeroelastic stability analyses of the airplane are conducted by adding one sub-structure at a time to the aeroelastic model. Specifically, aeroelastic models which are used are the wing only, wing-tail plane combination, complete air vehicle with and without wing control surfaces. With such a study it is intended to address the effect each sub-structure adds to the aeroelastic model on the critical aeroelastic stability modes and speeds, and to see how sensitive the aeroelastic stability modes and speeds are to model fidelity. Detailed structural and aeroelastic analyses showed that the airplane has sufficient structural integrity under the action of static limit loads, and no aeroelastic instability is expected to occur within the flight envelope of the airplane.
724

Design, Analysis And Optimization Of Thin Walled Semi-monocoque Wing Structures Using Different Structural Idealizations In The Preliminary Design Phase

Dababneh, Odeh 01 October 2011 (has links) (PDF)
This thesis gives a comprehensive study on the effect of using different structural idealizations on the design, analysis and optimization of thin walled semi-monocoque wing structures in the preliminary design phase. In the design part, wing structures are designed by employing two different structural idealizations that are typically used in the preliminary design phase. In the structural analysis part, finite element analysis of one of the designed wing configurations is performed using six different one and two dimensional element pairs which are typically used to model the sub-elements of semi-monocoque wing structures. The effect of using different finite element types on the analysis results of the wing structure is investigated. During the analysis study, depending on the mesh size used, conclusions are also inferred with regard to the deficiency of certain element types in handling the true external load acting on the wing structure. Finally in the optimization part, wing structure is optimized for minimum weight by using finite element models which have the same six different element pairs used in the analysis phase. The effect of using different one and two dimensional element pairs on the final optimized configurations of the wing structure is investigated, and conclusions are inferred with regard to the sensitivity of the optimized wing configurations with respect to the choice of different element types in the finite element model. Final optimized wing structure configurations are also compared with the simplified method based designs which are also optimized iteratively. Based on the results presented in the thesis, it is concluded that with the simplified methods, preliminary sizing of the wing structures can be performed with enough confidence, as long as the simplified method based designs are also optimized. Results of the simplified method of analysis showed that simplified method is applicable to be used as an analysis tool in performing the preliminary sizing of the wing structure before moving on to more refined finite element based analysis.
725

Progressive Failure Analysis Of Composite Shells

Olcay, Yasemin 01 February 2012 (has links) (PDF)
The objective of this thesis is to investigate the progressive failure behavior of laminated fiber reinforced composite shell structures under different loading conditions. The laminates are assumed to be orthotropic and the first order shear deformation theory is applied. Three-node layered flat-shell elements are used in the analysis. To verify the numerical results obtained, experimental and analytical results found in literature are compared with the outputs of the study, and the comparison is found to have shown good agreement with the previous work. Rectangular graphite/epoxy composite laminates under transverse loading are analyzed through several boundary conditions and stacking sequences. Maximum stress criteria, Hashin&rsquo / s criteria and Tsai Wu criteria are employed to detect the failure and progressive failure methodology is be implemented according to instantaneous degradation approach. First ply failure, final failure loads, corresponding deformations and failure patterns are presented and compared.
726

Inelastic Panel Zone Deformation Demands In Steel Moment Resisting Frames

Tuna, Mehmet 01 June 2012 (has links) (PDF)
Panel zone is one of the significant parts of beam-column connections in steel structures. Until the 1994 Northridge Earthquake, a few experimental research and parametric studies had been carried out to understand the behavior of the panel zones. However, after the Northridge Earthquake, it was observed that beam-column connections were unable to show presumed seismic performance. Therefore, current design codes needed to be revised to improve seismic performance of connections in general and panel zones in particular. In this research, panel zone deformation demands are examined using explicit three dimensional finite element models and considering different parameters. For this purpose, a frame model with two different beam-column configurations was developed in order to observe the effects of beam depth, the axial load level and the level of seismicity. The frame models were analyzed under twenty different ground motion records. Local strain demands at the panel zones as well as the global frame deformation demands are evaluated. Analysis results revealed that AISC Specification designs allowed panel zone yielding / however, panel zones designed according to FEMA 355D showed minimal yielding for both shallow and deep beam configurations. Based on the analysis results, local shear strain demands in panel zones were expressed as a function of interstory drifts and normalized panel zone thicknesses.
727

Investigation Of The Effect Of Soil Structure Interaction On The Behavior Of Concrete Faced Rockfill Dams And Assesment Of Current Analysis Methodologies

Erdogan, Emrah Ersan 01 June 2012 (has links) (PDF)
CFRD (Concrete Faced Rockfill Dam) construction becomes more frequent recently not only because of its secure nature, but also its economical cost where its built up material is feasible to obtain. Although CFRDs are known to be safe compared to other dam types, it is behavior during an earthquake loading still not a well-known aspect since it is mostly constructed in regions of low seismicity until now. Considering this fact, this study
728

Evaluation of an Interphase Element using Explicit Finite Element Analysis

Svensson, Daniel, Walander, Tomas January 2008 (has links)
<p>A research group at University of Skövde has developed an interphase element for implementation in the commercial FE-software Abaqus. The element is using the Tvergaard & Hutchinson cohesive law and is implemented in Abaqus Explicit version 6.7 using the VUEL subroutine. This bachelor degree project is referring to evaluate the interphase element and also highlight problems with the element.</p><p>The behavior of the interphase element is evaluated in mode I using Double Cantilever Beam (DCB)-specimens and in mode II using End Notch Flexure (ENF)-specimens. The results from the simulations are compared and validated to an analytical solution.</p><p>FE-simulations performed with the interphase element show very good agreement with theory when using DCB- or ENF-specimens. The only exception is when an ENF-specimen has distorted elements.</p><p>When using explicit finite element software the critical time step is of great importance for the results of the analyses. If a too long time step is used, the simulation will fail to complete or complete with errors. A feasible equation for predicting the critical time step for the interphase element has been developed by the research group and the reliability of this equation is evaluated.</p><p>The result from simulations shows an excellent agreement with the equation when the interphase element governs the critical time step. However when the adherends governs the critical time step the equation gives a time step that is too large. A modification of this equation is suggested.</p>
729

Design Automation Systems for Production Preparation : Applied on the Rotary Draw Bending Process

Johansson, Joel January 2008 (has links)
<p>Intensive competition on the global market puts great pressure on manufacturing companies to develop and produce products that meet requirements from customers and investors. One key factor in meeting these requirements is the efficiency of the product development and the production preparation process. Design automation is a powerful tool to increase efficiency in these two processes.</p><p>The benefits of automating the production preparation process are shortened led-time, improved product performance, and ultimately decreased cost. Further, automation is beneficial as it increases the ability to adapt products to new product specifications with production preparations done in few or in a single step. During the automation process, knowledge about the production preparation process is collected and stored in central systems, thus allowing full control over the design of production equipments.</p><p>Three main topics are addressed in this thesis: the flexibility of design automation systems, knowledge bases containing conflicting rules, and the automation of the finite element analysis process. These three topics are discussed in connection with the production preparation process of rotary draw bending.</p><p>One conclusion drawn from the research is that it is possible to apply the concept of design automation to the production preparation process at different levels of automation depending on characteristics of the implemented knowledge. In order to make design automation systems as flexible as possible, the concept of object orientation should be adapted when building the knowledge base and when building the products geometrical representations. It is possible to automate the process of setting up, running, and interpreting finite element analyses to a great extent and making the automated finite element analysis process a part of the global design automation system.</p>
730

Cost/Weight Optimization of Aircraft Structures

Kaufmann, Markus January 2008 (has links)
<p>Composite structures can lower the weight of an airliner significantly. The increased production cost, however, requires the application of cost-effective design strategies. Hence, a comparative value is required which is used for the evaluation of a design solution in terms of cost and weight. The direct operating cost (DOC) can be used as this comparative value; it captures all costs that arise when the aircraft is flown. In this work, a cost/weight optimization framework for composite structures is proposed. It takes into account manufacturing cost, non-destructive testing cost and the lifetime fuel consumption based on the weight of the aircraft, thus using a simplified version of the DOC as the objective function.</p><p>First, the different phases in the design of an aircraft are explained. It is then focused on the advantages and drawbacks of composite structures, the design constraints and allowables, and non-destructive inspection. Further, the topics of multiobjective optimization and the combined optimization of cost and weight are addressed. Manufacturing cost can be estimated by means of different techniques; here, feature-based cost estimations and parametric cost estimations proved to be most suitable for the proposed framework. Finally, a short summary of the appended papers is given.</p><p>The first paper contains a parametric study in which a skin/stringer panel is optimized for a series of cost/weight ratios (weight penalties) and material configurations. The weight penalty, defined as the specific lifetime fuel burn, is dependent on the fuel consumption of the aircraft, the fuel price and the viewpoint of the optimizer. It is concluded that the ideal choice of the design solution is neither low-cost nor low-weight but rather a combination thereof.</p><p>The second paper proposes the inclusion of non-destructive testing cost in the design process of the component, and the adjustment of the design strength of each laminate according to the inspection parameters. Hence, the scan pitch of the ultrasonic testing is regarded as a variable, representing an index for the (guaranteed) laminate quality. It is shown that the direct operating cost can be lowered when the quality level of the laminate is assigned and adjusted in an early design stage.</p>

Page generated in 0.0431 seconds