Spelling suggestions: "subject:"[een] FORCED CONVECTION"" "subject:"[enn] FORCED CONVECTION""
11 |
Mass Transfer with Chemical Reaction From Single SpheresHoughton, William 10 1900 (has links)
<p> Forced convection mass transfer rates from single gas bubbles, with accompanying chemical reaction, were determined experimentally in the intermediate Reynolds number range. The reacting system carbon dioxide-monoethanolaminc was chosen for this study. </p> <p> A mathematical model, describing forced convection mass transfer from a single sphere with accompanying first or second order reaction, was developed and solved using finite-difference techniques. Hydrodynamic conditions in the intermediate Reynolds number region were described using Kawaguti-type velocity profiles. </p> <p> The numerical solutions of the model have been compared with the experimental results of this study as well as with previous theoretical and experimental results. </p> / Thesis / Doctor of Philosophy (PhD)
|
12 |
[en] FORCED CONVECTION IN LAMINAR FLOWS OF VISCOPLASTIC LIQUIDS THROUGH TUBES AND ANNULI / [pt] CONVECÇÃO FORÇADA EM ESCOAMENTOS LAMINARES DE LÍQUIDOS VISCOPLÁSTICOS EM TUBOS E ESPAÇOS ANULARESMARIA HELENA FARIAS 05 January 2005 (has links)
[pt] Escoamentos de fluidos não Newtonianos são comumente
encontrados em processos industriais. Deste modo, é
importante conhecer bem o efeito dos processos sobre a
reologia desta classe de fluidos, assim como o inverso,
ou seja, conhecer o efeito da interferência da reologia de
tais fluidos sobre os processos. Fluidos não Newtonianos
exibem complexidade no seu comportamento mecânico, não
encontrada nos fluidos Newtonianos, como, por exemplo,
dependência da viscosidade com a taxa de cisalhamento
e a existência de uma tensão-limite de escoamento não nula.
Verifica-se, atualmente, a existência de uma ampla lacuna
na literatura no que diz respeito µa compreensão da
interação de fluidos não newtonianos em diferentes
geometrias de escoamento, em particular sob o ponto de vista
térmico. Algumas geometrias, por serem mais comuns nas
linhas industriais, têm recebido maior atenção nas
investigações sobre o referido aspecto, como, por exemplo,
os casos do tubo circular e do espaço anular. Encontra-se
uma maior quantidade de trabalhos publicados de estudos
analíticos ou de simulação numérica, enquanto que são raros
os artigos baseados em investigações experimentais. No
presente trabalho, o qual teve como motivação a avaliação
do comportamento térmico de um poço de petróleo durante sua
perfuração, estudou-se experimentalmente o efeito da
reologia do fluido no processo de transferência de calor em
espaços anulares e, também, em tubos. O objetivo foi
determinar o coeficiente interno de transferência de calor
(Número de Nusselt) para o caso de parede interna com fluxo
de calor uniforme e parede externa adiabática para o anular
e fluxo de calor uniforme para o tubo. Utilizou-se um
fluido do tipo viscoplástico, que reproduz bem o
comportamento do fluido de perfuração, em diferentes
concentrações, no intuito de se observar a influência da
reologia do fluido no escoamento não isotérmico. Diferentes
razões de raios do espaço anular foram estudadas. Os
resultados experimentais mostram que, em escoamentos
laminares e completamente desenvolvidos, a reologia do
fluido não afeta a transferência de calor no espaço anular,
sendo esta, fundamentalmente, dependente da geometria.
Estes resultados estão de acordo com previsões teóricas
recentemente publicadas, e a principal contribuição do
presente trabalho é confirmar este resultado surpreendente,
que torna mais simples os projetos envolvendo o escoamento
de materiais viscoplásticos em espaços anulares sob as
condições de contorno investigadas. / [en] Non-Newtonian fluids flow are very common in industrial
processes, so it is important to know both the effect of
the process on the fluid and vice-versa. Non-Newtonian
Fluids exhibit complex mechanical behavior not found in
Newtonian fluids, such as shear-rate-dependent viscosity
and non-zero Yield stress. Nowadays there is a lack of
understanding in the literature of the interaction among
non-Newtonian fluids and different flow geometries,
particularly as far as heat transfer is concerned. Some
geometries are found more frequently in industrial
processes, being, accordingly, a more frequent subject of
research. Among these are the tubes and annuli. Most of the
published articles about this subject are analytical
studies or numerical simulations, while those based on
experimental investigations are rather scarce. This work is
focused in the evaluation of the thermal behavior of
oil wells during the flow of the drilling fluid. The effect
of fluid rheology on heat transfer in annular spaces and
circular tubes was investigated experimentally. The purpose
was to determine the convective heat transfer coefficient
(Nusselt number). The boundary conditions for the annuli
were uniform heat flux at the inner wall and adiabatic
outer wall, while, for the tube, the heat flux at the wall
was kept constant and uniform. To mimic the drilling fluid
mechanical behavior, the working fluids were viscoplastic
liquids at different concentrations. For the annuli,
different radius ratios were studied. The experimental
results showed that, for laminar and fully developed flow
in the annuli, the fluid rheology does not affect the
Nusselt number, which is governed by the radius ratio only.
These results are in agreement with recently published
theoretical predictions, and the main contribution of this
work is to confirm this surprising result, which renders
simpler the projects involving non-Newtonian fluids flowing
in annuli under the thermal boundary conditions
investigated.
|
13 |
Performance and safety of centrifugal chillers using hydrocarbons.Tadros, Amir, The University of New South Wales. School of Mechanical & Manufacturing Engineering, UNSW January 2008 (has links)
The high ozone depletion and global warming potentials of fluorocarbon refrigerants have resulted in prohibitions and restrictions in many markets. Hydrocarbon refrigerants have low environmental impacts and are successfully used in domestic refrigerators and car air conditioners but replacing fluorocarbons in centrifugal chillers for air conditioning applications is unknown. Hydrocarbon replacements need a heat transfer correlation for refrigerant in flooded evaporators and predictions for operating conditions, capacity and performance. Safety precautions for large quantities of hydrocarbon refrigerants are needed and control of overpressure in plantrooms requires accurate prediction. Reliable correlations exist for forced convection in a single phase flow, condensation outside tubes and evaporation off sprayed tubes. For flooded evaporators this thesis proposes a new correlation for forced convection boiling of any refrigerant. An enhancement factor is combined with a modified Chen coefficient using recent pool boiling and forced convection correlations outside tubes. This correlates within typically a factor of two to known boiling literature measurements for CFC-113, CFC-11, HCFC-123, HFC-134a and HC-601. The operating conditions, capacity and performance of replacement hydrocarbons in centrifugal chillers were predicted using fluorocarbon performance as a model. With the new heat transfer correlation hydrocarbon predictions for flooded evaporators were made. For any fluorocarbon refrigerant there exists a replacement mixture of hydrocarbons which with a rotor speed increase about 40% gives the same cooling capacity in the same centrifugal chiller under the same operating conditions. For example replacing HCFC-123 in a flooded evaporator with HC-601/602 [90.4/9.6] and increasing the rotor speed by 43% will increase the coefficient of performance by 4.5% at the same cooling capacity. The maximum plantroom overpressure considered was from leakage and ignition of a uniform air/refrigerant mixture with maximum laminar burning velocity. Flow was modelled using a turbulence viscosity due to Launder and Spalding and turbulent deflagration using a reaction progress variable after Zimont. These partial differential equations were solved approximately for two and three dimensional geometries using finite volume methods from the Fluent program suite. Simple overpressure predictions from maximum flame area approximations agreed with Fluent results within 13.7% promising safe plantroom design without months of computer calculation.
|
14 |
On the fluid mechanics of electrochemical coating and spray paintingOlivas, Pedro January 2001 (has links)
Finite-volume methods have been used for modeling of fluidflows involved in forced convection electrochemical coating androtating spray painting systems. Electrodeposition on a singlecircular cylinder under forced convection for Reynolds numbers10 and 200 was simulated. Comparisons with earlier numericaland theoretical results are presented and it is shown that theunsteady wake that appears for Reynolds numbers greater than 50affects the mass transfer from the surface of the cylinder onlyin an average sense. This result is compared with a heattransfer case, where unsteadiness is much more manifest. Theeffect of application of circulation movement around thecylinder surface was considered, showing that the use ofoptimal values for circulation can create a recirculation zonearound the cylinder and result in a remarkable improvement ofthe deposit uniformity. The magnetoelectrolysis researchdiscipline is presented with focus on magnetic fields uses onmass transfer processes. A classification of the governingdimensionless parameters that control the phenomena isproposed. Application of magnetoelectrolysis on electroplatingprocesses is done for the first time. It is found that the useof an alternating magnetically induced force around thecylinder can result in interesting improvement of quality andproductivity. Application of numerical methods is also studiedin another field of the surface finishing industry, thepainting atomizers. A critical situation of "reverse flow" isanalyzed. Different parameters of this phenomenon are studiedand suggestions for atomizers design are given and tested. <b>Keywords:</b>mass transfer, electrochemical coating, iontransport, forced convection, diffusion, magnetoelectrolysis,electrolyte, limiting current, numerical simulation,finite-volume methods, paint atomization, Coanda effect.
|
15 |
Experimental investigation of turbine blade platform film cooling and rotational effect on trailing edge internal coolingWright, Lesley Mae 02 June 2009 (has links)
The present work has been an experimental investigation to evaluate the
applicability of gas turbine cooling technology. With the temperature of the mainstream
gas entering the turbine elevated above the melting temperature of the metal components,
these components must be cooled, so they can withstand prolonged exposure to the
mainstream gas. Both external and internal cooling techniques have been studied as a
means to increase the life of turbine components.
Detailed film cooling effectiveness distributions have been obtained on the
turbine blade platform with a variety of cooling configurations. Because the newly
developed pressure sensitive paint (PSP) technique has proven to be the most suitable
technique for measuring the film effectiveness, it was applied to a variety of platform
seal configurations and discrete film flows. From the measurements it was shown
advanced seals provide more uniform protection through the passage with less potential
for ingestion of the hot mainstream gases into the engine cavity.
In addition to protecting the outer surface of the turbine components, via film
cooling, heat can also be removed from the components internally. Because the turbine blades are rotating within the engine, it is important to consider the effect of rotation on
the heat transfer enhancement within the airfoil cooling channels. Through this
experimental investigation, the heat transfer enhancement has been measured in narrow,
rectangular channels with various turbulators. The present experimental investigation
has shown the turbulators, coupled with the rotation induced Coriolis and buoyancy
forces, result in non-uniform levels of heat transfer enhancement in the cooling channels.
Advanced turbulator configurations can be used to provide increased heat transfer
enhancement. Although these designs result in increased frictional losses, the benefit of
the heat transfer enhancement outweighs the frictional losses.
|
16 |
Optimum Design Of Parallel, Horizontal And Laminar Forced Convection Air-cooled Rectangular Channels With Insulated Lateral SurfacesOzdemir, Mehmet Ozan 01 July 2009 (has links) (PDF)
The objective of this thesis is to predict numerically the optimal spacing between parallel heat generating boards. The isothermal boards are stacked in a fixed volume of electronic package enclosed by insulated lateral walls, and they are cooled by laminar forced convection of air with prescribed pressure drop. Fixed pressure drop assumption is an acceptable model for installations in which several parallel boards in electronic equipment receive the coolant from the same source such as a fan.
In the numerical algorithm, the equations that govern the process of forced convection for constant property incompressible flow through one rectangular channel are solved. Numerical results of the flow and temperature field in each rectangular channel yield the optimal board-to-board spacing by which maximum heat dissipation rate from the package to the air is achieved. After the results of the optimization procedure are given, the correlations for the determination of the maximum heat transfer rate from the package and optimal spacing between boards are, respectively, derived in terms of prescribed pressure difference, board length, and density and kinematic viscosity of air.
In conclusion, the obtained correlations are compared and assessed with the available two-dimensional studies in literature for infinite parallel plates. Furthermore, existing two-dimensional results are extended to a more generalized three-dimensional case at the end of the thesis.
|
17 |
Heat Transfer Enhancement With NanofluidsOzerinc, Sezer 01 May 2010 (has links) (PDF)
A nanofluid is the suspension of nanoparticles in a base fluid. Nanofluids are promising for heat transfer enhancement due to their high thermal conductivity. Presently, discrepancy exists in nanofluid thermal conductivity data in the literature, and enhancement mechanisms have not been fully understood yet. In the first part of this study, a literature review of nanofluid thermal conductivity is performed. Experimental studies are discussed through the effects of some parameters such as particle volume fraction, particle size, and temperature on conductivity. Enhancement mechanisms of conductivity are summarized, theoretical models are explained, model predictions are compared with experimental data, and discrepancies are indicated.
Nanofluid forced convection research is important for practical application of nanofluids. Recent experiments showed that nanofluid heat transfer enhancement exceeds the associated thermal conductivity enhancement, which might be explained by thermal dispersion, which occurs due to random motion of nanoparticles. In the second part of the study, to examine the validity of a thermal dispersion model, hydrodynamically developed, thermally developing laminar Al2O3/water nanofluid flow inside a circular tube under constant wall temperature and heat flux boundary conditions is analyzed by using finite difference method with Alternating Direction Implicit Scheme. Numerical results are compared with experimental and numerical data in the literature and good agreement is observed especially with experimental data, which indicates the validity of the thermal dispersion model for explaining nanofluid heat transfer. Additionally, a theoretical analysis is performed, which shows that usage of classical correlations for heat transfer analysis of nanofluids is not valid.
|
18 |
Experimental Investigation Of R134a Flow In A 1.65 Mm Copper MinitubeTekin, Bilgehan 01 February 2011 (has links) (PDF)
This thesis investigates the refrigerant (R-134a) flow in a minitube experimentally. The small scale heat transfer is a relatively new research area and has been in favor since the end of 1970&rsquo / s. Refrigerant flow in mini- and microscale media is a potential enhancement factor for refrigeration technology in the future. For the forthcoming developments and progresses, experimental studies are invaluable in terms of having an insight and contributing to the establishment of infrastructure in the field in addition to leading the numerical and theoretical approaches. The studies in the literature show that low mass flow rate and constant wall temperature approach in minitubes and minichannels were not among the main areas of interest. Therefore, an experimental set-up was prepared in order to perform experiments of two-phase refrigerant flow in a 1.65 mm diameter copper minitube with the constant wall temperature approach. The design, preparation, and modifications of the experimental set-up are explained in this thesis. Two-phase flow and quality arrangements were done by pre-heating the refrigerant at saturation pressure and the constant wall temperature was achieved by a secondary cycle with water and ethylene glycol mixture as the working fluid. The heat transfer coefficient and the pressure drop for the two-phase flow with varying quality values and saturation temperatures of the refrigerant were calculated and compared with the results available in literature.
|
19 |
Correlation Based Thermal Design Of Air Transport Rack ChassisColpa, Bekir Onur 01 August 2011 (has links) (PDF)
In this thesis, a Thermal Model Tool (TMT) is developed for standard Avionic
Transport Rack (ATR) chassis and thermal design of a standard ATR chassis is done
using developed TMT. This ATR chassis is a Digital Moving Map (DMAP) of a
helicopter and the tool is used to determine the cooling channel details of DMAP.
TMT decreases design process steps and eliminates the complexity of the design.
Experimental studies are conducted on one of the existing chassis produced in
Aselsan Inc. for different operating conditions. There are two different operating
conditions for the chassis as 25 º / C and 55 º / C, which are given, in military standard
MIL-STD-810F. Critical temperature values are measured, which are used in
analytical calculations, and results are represented.
At the first step, outputs of the experimental studies are used in analytical calculation
in order to develop TMT. Secondly, heat dissipation rate of two different chassis are
v
calculated easily by using the TMT, and without making effort for CFD analysis, the
necessary number of plate fins of the chassis are assessed considering given
geometrical constraints and heat loads. Finally, cooling channels are generated using
the results of TMT.
In the next step the chassis, which are designed using the results of TMT, are
analyzed numerically by using Icepak Computational Fluid Dynamics (CFD) tool
and results of TMT are verified. The cooling capacities of the decided plate fins,
which are obtained by TMT, are checked whether or not the required heat dissipation
rates are ensured.
Consequently, TMT is tested under for two different operating conditions on two
different chassis. Analytical and numerical studies for both conditions are compared
and discussed in detail. Comparisons show that, developed TMT results are
meaningful and close to numerical results, therefore TMT can be used in
forthcoming ATR chassis designs.
|
20 |
温度分布を規定する強制熱対流場の形状同定片峯, 英次, KATAMINE, Eiji, 織田, 恭平, ODA, Kyohei, 畔上, 秀幸, AZEGAMI, Hideyuki 03 1900 (has links)
No description available.
|
Page generated in 0.0271 seconds