• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 219
  • 197
  • 74
  • 26
  • 23
  • 18
  • 11
  • 11
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 682
  • 180
  • 112
  • 81
  • 68
  • 52
  • 50
  • 47
  • 46
  • 46
  • 45
  • 44
  • 43
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Predicting the Settling Velocity of Lime Softening Flocs using Fractal Geometry

Vahedi, Arman 22 September 2010 (has links)
Stokes’ law that is traditionally used for modeling the sedimentation of flocs, incorrectly assumes that the floc is solid and spherical. Consequently the settling rates of flocs cannot be estimated using the Stokes law. The application of fractal dimensions to study the internal structure and settling of flocs formed in lime softening process was investigated. An optical microscope with motorized stage was used to measure the fractal dimensions of lime softening flocs directly on their images in 2 and 3D space. The fractal dimensions of the lime softening flocs were 1.15-1.27 for floc boundary, 1.49-1.90 for cross-sectional area and 2.55-2.99 for floc volume. Free settling tests were used for indirect determination of 3D fractal dimension. The measured settling velocity of flocs ranged from 0.1 to 7.1 mm/s (average: 2.37 mm/s) for the flocs with equivalent diameters from 10µm to 260µm (average: 124 µm). Floc settling model incorporating variable floc fractal dimensions as well as variable primary particle size was found to describe the settling velocity of large (>60 µm) lime softening flocs better than Stokes’ law. Settling velocities of smaller flocs (<60 µm) could still be quite well predicted by the Stokes’ law. The variation of fractal dimensions with lime floc size in this study indicated that two mechanisms are involved in the formation of these flocs: cluster-cluster aggregation for small flocs (>60 µm) and diffusion-limited aggregation for large flocs (<60 µm). Therefore, the relationship between the floc fractal dimension and floc size appears to be determined by floc aggregation mechanisms. The settling velocity of lime softening flocs was also modeled by a general model that assumes multiple normally distributed fractal dimensions for each floc size. The settling velocities were in the range of 0-10mm/s and in good agreement with measured settling velocities (0.1-7.1mm/s). The Stokes’ law overestimates the settling velocity of lime flocs. It seems that the settling velocity of flocs is mainly controlled by aggregation mechanisms and forming large floc does not guarantee improved sedimentation. The multifractal analysis of lime softening flocs showed that these aggregates are multifractal and a spectrum of fractal dimensions is required to describe the structure of an individual floc.
22

A reference model for information specification for metalworking SMEs

Toh, Koon Teng Keith January 1997 (has links)
No description available.
23

[en] AN ALGORITHM FOR COMPUTING IMAGE FRACTAL DIMENSION / [pt] UM ALGORITMO PARA O CÁLCULO DA DIMENSÃO FRACTAL DE IMAGENS

CLAUDENIZE FRANCISCA JAPIASSU CAMPOS 27 June 2012 (has links)
[pt] Neste trabalho, é apresentado um algoritmo eficiente de cálculo da Dimensão Fractal (DF) de imagens digitais. Este algoritmo fornece valores em toda a região teoricamente admissível (DF E [2,3]). É investigada a possibilidade de utilização deste método como uma ferramenta para identificação de falhas em tecidos. A DF caracteriza o grau de complexidade de um objeto. Esta característica têm sido usada recentemente na segmentação e classificação de texturas, na análise de formas e outros problemas. Este trabalho apresenta uma nova possibilidade de uso deste parâmetro, ainda não observado em outro trabalho. Foram realizados experimentos para verificar a eficiência do algoritmo desenvolvido: em imagens reais e sintéticas; na identificação de parâmetros de variação do cálculo; e verificação da influência da posição e da rotação do padrão da imagem na estimativa da imperfeição. / [en] In this work an efficient algorithm for estimation of the Fractal Dimension (FD) of images is presented. At first, the approach is tested on the synthetic images. It is expected that the PD range is 2.0 – 3.0. A good method, as this approach, should reflect this desirable feature. The utilization of such algorithm on textile imperfection identification is investigated. The FD is a feature proposed recently to characterize roughness, self-similiarity and the complexity degree in a picture. This characteristic has been used in textures segmentation and classification, shape analysis and other problems. However, its utilization on image change characterization is a new feacture. Experiments has been done, not only on synthetic images, but also on real textile. The relation of a picture scanned at various different orientation and relative rotation of digital images are also discussed.
24

Dimensão de Hausdorff e algumas aplicações / Hausdorff Dimension and some applications

Mucheroni, Laís Fernandes [UNESP] 18 August 2017 (has links)
Submitted by LAÍS FERNANDES MUCHERONI (lais.mucheroni@gmail.com) on 2017-09-18T17:23:23Z No. of bitstreams: 1 dissertacao_mestrado_lais.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) / Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18 / Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal. / We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
25

Aplicação da teoria fractal à quantificação da rugosidade e efeito escala da rugosidade / Fractal theory application to roughness quantification and roughness scale effect

Henry Willy Revilla Amezquita 21 January 2005 (has links)
O objetivo do presente trabalho é a aplicação da teoria fractal na quantificação de perfis de rugosidade de juntas rochosas. Para esta quantificação digitalizaram-se perfis de rugosidade encontrados na literatura e posteriormente determinou-se a dimensão fractal de cada perfil utilizando três métodos. Dentre estes, estabeleceu-se que o método modificado do divisor é o mais adequado para determinar a dimensão fractal. Verificou-se também a importância do parâmetro de intersecção, que também pode quantificar o perfil de rugosidade. De uma análise comparativa se estabeleceu que o parâmetro de intersecção quantifica melhor o perfil que a dimensão fractal. Para uso prático, este parâmetro foi adimensionalizado e o novo parâmetro foi denominado como peso fractal. Este último junto com a dimensão fractal quantificam melhor o perfil de rugosidade. Avaliou-se também o comportamento da dimensão fractal, parâmetro de intersecção e peso fractal no efeito escala da rugosidade. Estes têm uma dependência do comprimento do perfil. / The purpose of the present work is the application of the fractal theory to the quantification of rock joint roughness. Rock joint roughness profiles available in the literature were digitized in order to allow quantitative analysis. The fractal dimension was determined for each profile using three different methods. Among those methods, it was found that the modified divider method is the most adequate. The importance of the intercept parameter was also found for the fractal dimension determination and roughness quantification. Based on a comparative analysis, the intercept parameter was found to be better for roughness quantification than the fractal dimension. For practical purposes, a dimensionless form of the intercept parameter was established. The new parameter was called the fractal weight. The joint use of both fractal dimension and fractal weight was found to be the most effective way to quantify rock joint roughness profiles. The influence of the three mentioned parameters on joint strength scale effect was also analyzed.
26

Fractal Interpolation

Ramesh, Gayatri 01 January 2008 (has links)
This thesis is devoted to a study about Fractals and Fractal Polynomial Interpolation. Fractal Interpolation is a great topic with many interesting applications, some of which are used in everyday lives such as television, camera, and radio. The thesis is comprised of eight chapters. Chapter one contains a brief introduction and a historical account of fractals. Chapter two is about polynomial interpolation processes such as Newton s, Hermite, and Lagrange. Chapter three focuses on iterated function systems. In this chapter I report results contained in Barnsley s paper, Fractal Functions and Interpolation. I also mention results on iterated function system for fractal polynomial interpolation. Chapters four and five cover fractal polynomial interpolation and fractal interpolation of functions studied by Navascués. Chapter five and six are the generalization of Hermite and Lagrange functions using fractal interpolation. As a concluding chapter we look at the current applications of fractals in various walks of life such as physics and finance and its prospects for the future.
27

Electromagnetic Properties of Fractal Antennas

Ewing, Jordan Jeffrey 07 June 2018 (has links)
No description available.
28

Fractal Gauges for Hyperspace: One Limit Point

Peng, Na 27 September 2010 (has links)
No description available.
29

Geometria fractal : da natureza para a sala de aula

Ferreira Filho, José Roberto 02 May 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work deals with the study of fractal geometry, emphasizing its main features included on natural systems that motivate them. Here some names that contributed to the emergence and development of mathematical fractals, emphasizing examples of natural fractals and the pioneer of Benoit B. Mandelbrot contribution . / Este trabalho trata do estudo da geometria fractal, enfatizando suas principais caracter sticas compreendidas com base nos sistemas naturais que as motivam. Apresentamos alguns nomes que contribuiram para o surgimento e desenvolvimento dos fractais matem aticos, enfatizando os exemplos de fractais naturais e a contribui c~ao do pioneiro Benoit B. Mandelbrot.
30

Desenvolvimento e otimização de antenas Vivaldi antipodais para aplicações a altas frequências. / Development and optimization of antipodal Vivaldi antena for applications at high frequencies.

Oliveira, Alexandre Maniçoba de 13 November 2015 (has links)
Esta tese propõe a síntese e o estudo de uma nova técnica de cavidades de borda aplicada a antenas Vivaldi, com o intuito de melhorar suas características de diretividade. Embora as antenas do tipo Vivaldi possuam características diretivas, elas produzem radiações laterais indesejáveis, o que se reflete nos elevados índices de lóbulos laterais devido a correntes superficiais que fluem ao longo das bordas metalizadas nas laterais da antena. Estas correntes são a origem das radiações laterais que vêm sendo mitigadas pela aplicação de cavidades ressonantes, triangulares ou retangulares, que aprisionam tais correntes e, consequentemente, atenuam os lóbulos laterais, sem o incremento do lóbulo principal, uma vez que toda a energia dos lóbulos laterais é apenas confinada nos ressonadores e por isso literalmente perdida. Ao contrário desses esforços, este trabalho propõe cavidades radiantes tanto na forma de abertura exponencial, como na forma do fractais de Koch, que funcionam como radiadores auxiliares (antenas auxiliares), canalizando as correntes de borda e aproveitando-as para aumentar os níveis do lóbulo principal, mitigando os níveis de lóbulo lateral. A síntese desta nova técnica foi implementada em uma antena Vivaldi antipodal com características de baixa diretividade, como qualquer antena Vivaldi, o que foi corrigido e a aplicação da técnica de cavidades radiantes deu origem a duas novas antenas Vivaldis efetivamente diretivas. Os resultados foram obtidos através de simulações do modelo numérico no CST Microwave Studio e confirmados com medidas de laboratório, o que evidenciou a melhora das características de diretividade da antena pela aplicação da nova técnica de cavidades radiantes. / This work presents a new Slot Edge technique applied to Vivaldi antennas to improve their characteristics of directivity, resulting in two new Vivaldi antennas: the Palm Tree Vivaldi antenna and the Koch Vivaldi antenna. This new technique proposes to add lateral radiators which reduce the side lobe level, increasing the gain of the main lobe in an unprecedented way. This technique is called radiating slot edges, and acts as parasitic antennas, surface currents draining edges of the antenna, and using them to increase the gain in the main lobe. The development was done systematically, starting with an extensive literature review, design and simulation in CST, as well as prototyping and measurements of several antenna designs. All this effort proved the functionality of this technique.

Page generated in 0.0288 seconds