Spelling suggestions: "subject:"[een] FREE BOUNDARY"" "subject:"[enn] FREE BOUNDARY""
11 |
Two Problems in non-linear PDE’s with Phase TransitionsJonsson, Karl January 2018 (has links)
This thesis is in the field of non-linear partial differential equations (PDE), focusing on problems which show some type of phase-transition. A single phase Hele-Shaw flow models a Newtoninan fluid which is being injected in the space between two narrowly separated parallel planes. The time evolution of the space that the fluid occupies can be modelled by a semi-linear PDE. This is a problem within the field of free boundary problems. In the multi-phase problem we consider the time-evolution of a system of phases which interact according to the principle that the joint boundary which emerges when two phases meet is fixed for all future times. The problem is handled by introducing a parameterized equation which is regularized and penalized. The penalization is non-local in time and tracks the history of the system, penalizing the joint support of two different phases in space-time. The main result in the first paper is the existence theory of a weak solution to the parameterized equations in a Bochner space using the implicit function theorem. The family of solutions to the parameterized problem is uniformly bounded allowing us to extract a weakly convergent subsequence for the case when the penalization tends to infinity. The second problem deals with a parameterized highly oscillatory quasi-linear elliptic equation in divergence form. As the regularization parameter tends to zero the equation gets a jump in the conductivity which occur at the level set of a locally periodic function, the obstacle. As the oscillations in the problem data increases the solution to the equation experiences high frequency jumps in the conductivity, resulting in the corresponding solutions showing an effective global behaviour. The global behavior is related to the so called homogenized solution. We show that the parameterized equation has a weak solution in a Sobolev space and derive bounds on the solutions used in the analysis for the case when the regularization is lost. Surprisingly, the limiting problem in this case includes an extra term describing the interaction between the solution and the obstacle, not appearing in the case when obstacle is the zero level-set. The oscillatory nature of the problem makes standard numerical algorithms computationally expensive, since the global domain needs to be resolved on the micro scale. We develop a multi scale method for this problem based on the heterogeneous multiscale method (HMM) framework and using a finite element (FE) approach to capture the macroscopic variations of the solutions at a significantly lower cost. We numerically investigate the effect of the obstacle on the homogenized solution, finding empirical proof that certain choices of obstacles make the limiting problem have a form structurally different from that of the parameterized problem. / <p>QC 20180222</p>
|
12 |
Option pricing under exponential jump diffusion processesBu, Tianren January 2018 (has links)
The main contribution of this thesis is to derive the properties and present a closed from solution of the exotic options under some specific types of Levy processes, such as American put options, American call options, British put options, British call options and American knock-out put options under either double exponential jump-diffusion processes or one-sided exponential jump-diffusion processes. Compared to the geometric Brownian motion, exponential jump-diffusion processes can better incorporate the asymmetric leptokurtic features and the volatility smile observed from the market. Pricing the option with early exercise feature is the optimal stopping problem to determine the optimal stopping time to maximize the expected options payoff. Due to the Markovian structure of the underlying process, the optimal stopping problem is related to the free-boundary problem consisting of an integral differential equation and suitable boundary conditions. By the local time-space formula for semi-martingales, the closed form solution for the options value can be derived from the free-boundary problem and we characterize the optimal stopping boundary as the unique solution to a nonlinear integral equation arising from the early exercise premium (EEP) representation. Chapter 2 and Chapter 3 discuss American put options and American call options respectively. When pricing options with early exercise feature under the double exponential jump-diffusion processes, a non-local integral term will be found in the infinitesimal generator of the underlying process. By the local time-space formula for semi-martingales, we show that the value function and the optimal stopping boundary are the unique solution pair to the system of two integral equations. The significant contributions of these two chapters are to prove the uniqueness of the value function and the optimal stopping boundary under less restrictive assumptions compared to previous literatures. In the degenerate case with only one-sided jumps, we find that the results are in line with the geometric Brownian motion models, which extends the analytical tractability of the Black-Scholes analysis to alternative models with jumps. In Chapter 4 and Chapter 5, we examine the British payoff mechanism under one-sided exponential jump-diffusion processes, which is the first analysis of British options for process with jumps. We show that the optimal stopping boundaries of British put options with only negative jumps or British call options with only positive jumps can also be characterized as the unique solution to a nonlinear integral equation arising from the early exercise premium representation. Chapter 6 provides the study of American knock-out put options under negative exponential jump-diffusion processes. The conditional memoryless property of the exponential distribution enables us to obtain an analytical form of the arbitrage-free price for American knock-out put options, which is usually more difficult for many other jump-diffusion models.
|
13 |
Mathematical Analysis of Some Partial Differential Equations with ApplicationsChen, Kewang 01 January 2019 (has links)
In the first part of this dissertation, we produce and study a generalized mathematical model of solid combustion. Our generalized model encompasses two special cases from the literature: a case of negligible heat diffusion in the product, for example, when the burnt product is a foam-like substance; and another case in which diffusivities in the reactant and product are assumed equal. In addition to that, our model pinpoints the dynamics in a range of settings, in which the diffusivity ratio between the burned and unburned materials varies between 0 and 1. The dynamics of temperature distribution and interfacial front propagation in this generalized solid combustion model are studied through both asymptotic and numerical analyses. For asymptotic analysis, we first analyze the linear instability of a basic solution to the generalized model. We then focus on the weakly nonlinear case where a small perturbation of a neutrally stable parameter is taken so that the linearized problem is marginally unstable. Multiple scale expansion method is used to obtain an asymptotic solution for large time by modulating the most linearly unstable mode. On the other hand, we integrate numerically the exact problem by the Crank-Nicolson method. Since the numerical solutions are very sensitive to the derivative interfacial jump condition, we integrate the partial differential equation to obtain an integral-differential equation as an alternative condition. The result system of nonlinear algebraic equations is then solved by the Newton’s method, taking advantage of the sparse structure of the Jacobian matrix. By a comparison of our asymptotic and numerical solutions, we show that our asymptotic solution captures the marginally unstable behaviors of the solution for a range of model parameters. Using the numerical solutions, we also delineate the role of the diffusivity ratio between the burned and unburned materials. We find that for a representative set of this parameter values, the solution is stabilized by increasing the temperature ratio between the temperature of the fresh mixture and the adiabatic temperature of the combustion products. This trend is quite linear when a parameter related to the activation energy is close to the stability threshold. Farther from this threshold, the behavior is more nonlinear as expected. Finally, for small values of the temperature ratio, we find that the solution is stabilized by increasing the diffusivity ratio. This stabilizing effect does not persist as the temperature ratio increases. Competing effects produce a “cross-over” phenomenon when the temperature ratio increases beyond about 0.2.
In the second part, we study the existence and decay rate of a transmission problem for the plate vibration equation with a memory condition on one part of the boundary. From the physical point of view, the memory effect described by our integral boundary condition can be caused by the interaction of our domain with another viscoelastic element on one part of the boundary. In fact, the three different boundary conditions in our problem formulation imply that our domain is composed of two different materials with one condition imposed on the interface and two other conditions on the inner and outer boundaries, respectively. These transmission problems are interesting not only from the point of view of PDE general theory, but also due to their application in mechanics. For our mathematical analysis, we first prove the global existence of weak solution by using Faedo-Galerkin’s method and compactness arguments. Then, without imposing zero initial conditions on one part of the boundary, two explicit decay rate results are established under two different assumptions of the resolvent kernels. Both of these decay results allow a wider class of relaxation functions and initial data, and thus generalize some previous results existing in the literature.
|
14 |
A Comparative Study of American Option Valuation and ComputationRodolfo, Karl January 2007 (has links)
Doctor of Philosophy (PhD) / For many practitioners and market participants, the valuation of financial derivatives is considered of very high importance as its uses range from a risk management tool, to a speculative investment strategy or capital enhancement. A developing market requires efficient but accurate methods for valuing financial derivatives such as American options. A closed form analytical solution for American options has been very difficult to obtain due to the different boundary conditions imposed on the valuation problem. Following the method of solving the American option as a free boundary problem in the spirit of the "no-arbitrage" pricing framework of Black-Scholes, the option price and hedging parameters can be represented as an integral equation consisting of the European option value and an early exercise value dependent upon the optimal free boundary. Such methods exist in the literature and along with risk-neutral pricing methods have been implemented in practice. Yet existing methods are accurate but inefficient, or accuracy has been compensated for computational speed. A new numerical approach to the valuation of American options by cubic splines is proposed which is proven to be accurate and efficient when compared to existing option pricing methods. Further comparison is made to the behaviour of the American option's early exercise boundary with other pricing models.
|
15 |
Optimal Stopping and Model Robustness in Mathematical FinanceWanntorp, Henrik January 2008 (has links)
Optimal stopping and mathematical finance are intimately connected since the value of an American option is given as the solution to an optimal stopping problem. Such a problem can be viewed as a game in which we are trying to maximize an expected reward. The solution involves finding the best possible strategy, or equivalently, an optimal stopping time for the game. Moreover, the reward corresponding to this optimal time should be determined. It is also of interest to know how the solution depends on the model parameters. For example, when pricing and hedging an American option, the volatility needs to be estimated and it is of great practical importance to know how the price and hedging portfolio are affected by a possible misspecification. The first paper of this thesis investigates the performance of the delta hedging strategy for a class of American options with non-convex payoffs. It turns out that an option writer who overestimates the volatility will obtain a superhedge for the option when using the misspecified hedging portfolio. In the second paper we consider the valuation of a so-called stock loan when the lender is allowed to issue a margin call. We show that the price of such an instrument is equivalent to that of an American down-and-out barrier option with a rebate. The value of this option is determined explicitly together with the optimal repayment strategy of the stock loan. The third paper considers the problem of how to optimally stop a Brownian bridge. A finite horizon optimal stopping problem like this can rarely be solved explicitly. However, one expects the value function and the optimal stopping boundary to satisfy a time-dependent free boundary problem. By assuming a special form of the boundary, we are able to transform this problem into one which does not depend on time and solving this we obtain candidates for the value function and the boundary. Using stochastic calculus we then verify that these indeed satisfy our original problem. In the fourth paper we consider an investor wanting to take advantage of a mispricing in the market by purchasing a bull spread, which is liquidated in case of a market downturn. We show that this can be formulated as an optimal stopping problem which we then, using similar techniques as in the third paper, solve explicitly. In the fifth and final paper we study convexity preservation of option prices in a model with jumps. This is done by finding a sufficient condition for the no-crossing property to hold in a jump-diffusion setting.
|
16 |
Monotonicity formulas and applications in free boundary problemsEdquist, Anders January 2010 (has links)
This thesis consists of three papers devoted to the study of monotonicity formulas and their applications in elliptic and parabolic free boundary problems. The first paper concerns an inhomogeneous parabolic problem. We obtain global and local almost monotonicity formulas and apply one of them to show a regularity result of a problem that arises in connection with continuation of heat potentials.In the second paper, we consider an elliptic two-phase problem with coefficients bellow the Lipschitz threshold. Optimal $C^{1,1}$ regularity of the solution and a regularity result of the free boundary are established.The third and last paper deals with a parabolic free boundary problem with Hölder continuous coefficients. Optimal $C^{1,1}\cap C^{0,1}$ regularity of the solution is proven. / QC20100621
|
17 |
Dynamic Programming Approach to Price American OptionsYeh, Yun-Hsuan 06 July 2012 (has links)
We propose a dynamic programming (DP) approach for pricing American options over a finite time horizon. We model uncertainty in stock price that follows geometric Brownian motion (GBM) and let interest rate and volatility be fixed. A procedure based on dynamic programming combined with piecewise linear interpolation approximation is developed to price the value of options. And we introduce the free boundary problem into our model. Numerical experiments illustrate the relation between value of option and volatility.
|
18 |
Optimal Control of the Classical Two-Phase Stefan Problem in Level Set FormulationBernauer, Martin K., Herzog, Roland 02 November 2010 (has links) (PDF)
Optimal control (motion planning) of the free interface in classical two-phase Stefan problems is considered. The evolution of the free interface is modeled by a level set function. The first-order optimality system is derived on a formal basis. It provides gradient information based on the adjoint temperature and adjoint level set function. Suitable discretization schemes for the forward and adjoint systems are described. Numerical examples verify the correctness and flexibility of the proposed scheme.
|
19 |
A Comparative Study of American Option Valuation and ComputationRodolfo, Karl January 2007 (has links)
Doctor of Philosophy (PhD) / For many practitioners and market participants, the valuation of financial derivatives is considered of very high importance as its uses range from a risk management tool, to a speculative investment strategy or capital enhancement. A developing market requires efficient but accurate methods for valuing financial derivatives such as American options. A closed form analytical solution for American options has been very difficult to obtain due to the different boundary conditions imposed on the valuation problem. Following the method of solving the American option as a free boundary problem in the spirit of the "no-arbitrage" pricing framework of Black-Scholes, the option price and hedging parameters can be represented as an integral equation consisting of the European option value and an early exercise value dependent upon the optimal free boundary. Such methods exist in the literature and along with risk-neutral pricing methods have been implemented in practice. Yet existing methods are accurate but inefficient, or accuracy has been compensated for computational speed. A new numerical approach to the valuation of American options by cubic splines is proposed which is proven to be accurate and efficient when compared to existing option pricing methods. Further comparison is made to the behaviour of the American option's early exercise boundary with other pricing models.
|
20 |
Existence and regularity results for some shape optimization problems / Résultats d'existence et régularité pour des problèmes d'optimisation de formeVelichkov, Bozhidar 08 November 2013 (has links)
Les problèmes d'optimisation de forme sont présents naturellement en physique, ingénierie, biologie, etc. Ils visent à répondre à différentes questions telles que:-A quoi une aile d'avion parfaite pourrait ressembler?-Comment faire pour réduire la résistance d'un objet en mouvement dans un gaz ou un fluide?-Comment construire une structure élastique de rigidité maximale?-Quel est le comportement d'un système de cellules en interaction?Pour des exemples précis et autres applications de l'optimisation de forme nous renvoyons à [20] et [69]. Ici, nous traitons les aspects mathématiques théoriques de l'optimisation de forme, concernant l'existence d'ensembles optimaux ainsi que leur régularité. Dans toutes les situations que l'on considère, la fonctionnelle dépend de la solution d'une certaine équation aux dérivées partielles posée sur la forme inconnue. Nous allons parfois se référer à cette fonction comme une fonction d'état.Les fonctions d'état les plus simples, mais qui apparaissent dans beaucoup de problèmes, sont données par les solutions des équations -Δw = 1 et -Δu = λu,qui sont liées à la torsion et aux modes d'oscillation d'un objet donné. Notre étude se concentrera principalement sur ces fonctionnelles de formes, impliquant la torsion et le spectre.[20] D. Bucur, G. Buttazzo: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations 65, Birkhauser Verlag, Basel (2005).[69] A. Henrot, M. Pierre: Variation et optimisation de formes: une analyse geometrique. Springer-Berlag, Berlin, 2005. / The shape optimization problems naturally appear in engineering and biology. They aim to answer questions as:-What a perfect wing may look like?-How to minimize the resistance of a moving object in a gas or a fluid?-How to build a rod of maximal rigidity?-What is the behaviour of a system of cells?The shape optimization appears also in physics, mainly in electrodynamics and in the systems presenting both classical and quantum mechanics behaviour. For explicit examples and furtheraccount on the applications of the shape optimization we refer to the books [20] and [69]. Here we deal with the theoretical mathematical aspects of the shape optimization, concerning existence of optimal sets and their regularity. In all the practical situations above, the shape of the object in study is determined by a functional depending on the solution of a given partial differential equation. We will sometimes refer to this function as a state function.The simplest state functions are provided by solutions of the equations−∆w = 1 and −∆u = λu,which usually represent the torsion rigidity and the oscillation modes of a given object. Thus our study will be concentrated mainly on the situations, in which these state functions appear,i.e. when the optimality is intended with respect to energy and spectral functionals. [20] D. Bucur, G. Buttazzo: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations 65, Birkhauser Verlag, Basel (2005).[69] A. Henrot, M. Pierre: Variation et optimisation de formes: une analyse geometrique. Springer-Berlag, Berlin, 2005.
|
Page generated in 0.0298 seconds