• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 114
  • 31
  • 26
  • 19
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 463
  • 80
  • 37
  • 35
  • 33
  • 32
  • 30
  • 27
  • 26
  • 26
  • 25
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

ARTIFICIAL GROUND FREEZING REFRIGERATION PLANT OPTIMIZATION

2015 March 1900 (has links)
Artificial ground freezing (AGF) is a process used to strengthen soil and rock by freezing trapped pore water. Freezing is accomplished by pumping calcium chloride brine, chilled to approximately – 30˚C in ammonia refrigeration plants, through heat exchangers drilled into the ground. A knowledge gap exists in the field of AGF regarding the relationship between the performance of the refrigeration plants and the ground heat removal process. The coupling of these two aspects of AGF requires knowledge of the plant’s refrigeration capacity as a function of many factors; the most important of which is the temperature of the brine returning from the freeze pipes. However, refrigeration plant manufacturers do not provide sufficient information about the plant’s performance as a function of brine temperature. Typically, AGF plants are only rated at one operating point due to the impracticality in experimentally rating such large plants and the lack of any standard test methods. Refrigeration system models available in the existing literature do not emulate the compressor control system responsible for preventing compressor overloading. Therefore, the goal of this research is to develop a model that can predict the performance of an AGF refrigeration plant over a range of operating points, using plant specifications that are readily available in the documentation provided by the manufacturer of the plant. To fill the knowledge gap, a thermodynamic model is developed of an existing 1500 TR AGF plant at Cameco’s Cigar Lake mine. The Cigar Lake plant uses flooded shell-and-tube evaporators, two-stage economized twin screw compressors, and air cooled condensers packaged into five refrigeration modules. Each component in the system, including the evaporator, compressor, and condenser, is modeled individually, and then the individual models are combined to calculate the overall system capacity. The model emulates the behavior of the compressor’s slide valves, which are used to limit the plant capacity, limit suction pressure, control intermediate pressure, and control the discharge pressures in the system. In addition, the model accounts for the effects of the oil injection into the screw compressors, which cools the compressors and seals the spaces between the lobes of the compressor rotors. The model is validated using operating data from the Cigar Lake plant, which was collected over a period of eight months by plant operators. After calibration, the modeled plant capacities and the temperature of the brine leaving the refrigeration plant are found to be in agreement with the measured capacities and brine temperatures. The overall plant capacity results match measured capacities within ±14%, and the predicted brine temperatures match the measured values leaving the plant within ±5%. The modeled capacities match the measured capacities within the uncertainty in the measured data. The simulation of the Cigar Lake plant demonstrates that the performance of the plant is highly dependent upon the temperature of the brine returning to the plant. For example, a ±10% change in brine temperature causes a 22% overall change in the capacity of the refrigeration plant. The simulation also demonstrates that, even with the plant’s air cooled condensers, changes in the ambient temperature have little effect on the performance of the plant with the existing equipment. Furthermore, the results show that the selected suction pressure of the second compression stage, or intermediate pressure, affects the performance of the refrigeration plant. These findings lead to important plant performance optimization opportunities. An optimization study using the model demonstrates that, by selecting a lower intermediate temperature than what the existing literature suggests, an improvement in overall refrigeration plant capacity of 3% can be achieved. Additional simulations identify the brine tank, which allows for different brine flow rates to exist on the field and plant side of the tank, as an inefficient component in the system. The brine tank not only cools the brine returning from the field before it is pumped to the refrigeration modules but it allows heat to be transferred between the warm and cold brine. By eliminating the tank, plumbing all of the refrigeration modules in parallel, and installing appropriately sized evaporators, the capacity of the refrigeration plant can be increased by 17%. Further capacity gains can be realized by upgrading the evaporators to increase their capacity.
62

A climatology of lower tropospheric environments during freezing rain events in the south-central United States

Hanni-Wells, Michael R. January 2004 (has links)
Intraregional variability in tropospheric environments during freezing rain events is investigated for the South Central United States. National Weather Service (NWS) Automated Surface Observing Stations (ASOS) are used to detect the occurrence of freezing rain, and rawinsonde observations (RAOB) employed to analyze lower tropospheric vertical profiles of temperature, dew point temperature, wind, and layer thicknesses during these periods. The study area consists of seven 100 mile radius RAOB proximity sub-regions centered around Peachtree City Georgia, Nashville Tennessee, Birmingham Alabama, Jackson Mississippi, Shreveport Louisiana, Little Rock Arkansas, and Springfield Missouri. A series of difference of means tests are performed to determine if statistically significant differences exist in mean values of selected tropospheric variables during periods of freezing rain between adjacent RAOB sites to determine the character of intraregional variability within the South Central United States. Results of these tests suggest 5 sub-regions exist in which freezing rain events can be forecast based upon thresholds and ranges of lower tropospheric environmental variables. As a final step, flow charts are developed for each of the 5 subregions to aid meteorologists in forecasting freezing rain within the Southeast United States. / Department of Geography
63

Physical Model Testing of Piles in Thawing Soils Subjected to Single and Combined Loadings

Singh, Harshdeep 18 May 2022 (has links)
The primary purpose of pile foundations is to transfer vertical loads due to the transfer of the weight of the superstructure to the deeper ground. However, many civil engineering structures, such as bridges, transmission towers, tall chimneys, and solar panels, are subjected to significant lateral loads and overturning moments in addition to axial loads. Potential sources of lateral loads (not due to earthquakes) include wind, waves, ice forces, passive earth pressure, etc. On the other hand, axial loadings can be live loads from a structure, forces developed due to ground freezing, etc. Consequently, pile foundations for these structures should be adequately designed to resist compressive loads combined with lateral and uplift loads and moments. In most cases, these forces (compressive, lateral, and uplift) and moments are often simultaneously applied on the piles. One of the key objectives for the engineer and designer is to determine the deflections and stresses in a pile in order to keep them within tolerable limits. Passive soil resistance can be very effective in proving lateral support for the pile. However, passive soil resistance is a function of the soil thermal regime (freezing, thawing, and temperature). Due to global warming, the thermal regimes of the soils in Canada and other cold regions in the world have changed in the past decades. The change in the thermal regimes of the soil may affect the geotechnical response or performance of the pile foundations. This thesis presents and discusses the results of physical model testing on model piles in unfrozen, frozen, and thawing fine sand, which are subjected to individual and combined axial (uplift) and lateral loads. The dimensions of the pile model are established by using physical scaling laws. The physical model is also equipped with various sensors and instruments (e.g., linear variable differential transformer (LVDT), and temperature sensors) to monitor the pile and soil response during and after loading. The results of the study show that the thermal regime in the soil significantly affects the performance of the pile under combined loadings (lateral and uplift). The lateral capacity of the pile under combined loads in frozen soil is increased by 648% compared to that in unfrozen ground whereas the uplift capacity under combined loadings in frozen soil is increased by 29%. Due to the effects of the freezing and thawing (F-T) cycles of the soil, a steady increase in the lateral capacity of the pile under the combined loadings is observed. On the other hand, the uplift capacity under the combined loadings in soil subjected to F-T cycles remains constant. The results will be useful in the geotechnical design of pile foundations for bridges and other structures in Canada and other cold regions in the world. The findings of this research will contribute to efficient design practices for pile foundations in cold regions with rapid changing climatic conditions.
64

Climate change effects on freezing damage in three subarctic bryophytes : A snow manipulation field experiment in a tundra ecosystem in Abisko, Sweden

van Zuijlen, Kristel January 2015 (has links)
Climate change is expected to have a large impact on northern ecosystems. Increased temperatures and altered precipitation and snow cover patterns will have a great impact on subarctic tundra. Bryophytes form an important component of tundra ecosystems because of their high abundance and their importance in many ecological processes. The effect of elevation and snow cover on freezing damage in shoots of three subarctic bryophytes: Ptilidium ciliare, Hylocomium splendens and Sphagnum fuscum, was studied in a snow manipulation field experiment at different elevations in Abisko, Sweden, during early spring. The treatments included snow addition, snow removal and control. In addition, bryophyte healthiness at the plot scale was determined by image analysis using colour selection, and soil temperature and moisture data were collected. Freezing damage differed significantly among bryophyte species with P. ciliare having the lowest freezing damage. There was a decrease in freezing damage over time due to the increase in temperature as spring progressed. Counter expectation, freezing damage was higher at low elevation although the mean daily minimum temperature was lower at higher elevation, which might be due to adaptation effects. Snow treatment had only a minor effect on freezing damage, but it did have an effect on proportion of undamaged tissue at the plot scale which increased with increasing snow cover at high elevation, but decreased with increasing snow cover at low elevation. Soil moisture content was also affected by snow treatment. The number of freeze-thaw cycles was less for S. fuscum and H. splendens compared to bare soil plots, which indicates insulating capacities of these bryophytes. Freezing damage could not be explained by the measured climate variables alone; therefore, it is likely the result of a complex set of factors, possibly including solar radiation and disturbance by herbivores.
65

Effects of climate change on freezing damage in three subarctic bryophyte species

Kassel, Marlene January 2017 (has links)
Climate change is expected to have a strong impact on subarctic ecosystems. Increased temperatures as well as altered precipitation and snow cover patterns are predicted to change species distribution and affect biogeochemical processes in the subarctic tundra. Bryophytes are an essential vegetational component in northern ecosystems, due to their high abundance and importance in many ecological processes. In this study the effects of elevation and altered snow cover on the temporal dynamics of freezing damage in three subarctic bryophyte species (Hylocomium splendens, Ptilidium ciliare, and Sphagnum fuscum) were studied in a snow manipulation field experiment in Abisko, during early spring. Soil temperature and field moisture of moss shoots were collected. A freeze-thaw incubation experiment was conducted to investigate the freeze-thaw cycle resistance of H. splendens and P. ciliare originating from habitats with two differing snow-cover thicknesses. Freezing damage differed significantly between the bryophytes species with P. ciliare experiencing the least and S. fuscum the highest damage. Damage was higher at the low elevation, possibly attributable to acclimation effects. Snow removal led to higher damage in moss shoots, but no interactions of the different snow cover treatments with elevation, species or time were found. Freezing damage increased over time and no recovery occurred, likely due to temporal patterns in soil freeze-thaw cycles during early spring. Soil freeze-thaw cycles were the main factor influencing damage in bryophytes after snow melt. Measured environmental parameters could not explain the entire variation in damage. Damage might additionally be attributable to increased UV radiation or disturbances by herbivores.
66

Avaliação do processo de congelação do sêmen equino in natura diluído, 5ºC, -55ºC e pós-descongelação / Evaluation of the freezing process of extender equine semen, 5°C, -55°C and thawing

Carvalho, Carla Patricia Teodoro de 24 November 2017 (has links)
Durante o processo de criopreservação o espermatozoide passa por diversas mudanças físico-químicas, podendo ocasionar variados graus de lesões as células espermáticas. Determinar o momento do processo de congelação pelo qual o espermatozoide está mais suscetível às injúrias seria importante passo para progresso do processo de congelação e, com isso, a fertilização. O objetivo foi avaliar o efeito do processo de congelação na integridade das membranas plasmática, acrossomal e potencial mitocondrial (PIAIA) integridade das membranas plasmática (MPI), acrossomal (AI), potencial mitocondrial (APM) e citoesqueleto de espermatozoides equinos in natura diluído, 5°C, -55°C e -196°C. Além de, estudar as etapas de refrigeração, congelação e dentro da congelação, a etapa de supercooling. Assim como, verificar o efeito de duas curvas de congelação (-15°C/min e -33°C/min) durante o supercooling 5°C à -55°C, para isto, foram utilizadas duas máquinas de congelação modelo TK 3000. Para desenvolvimento do experimento, o sêmen foi envasado em palhetas de 0,5mL com concentrações de 100x106 espermatozoides/palheta e submetidos a uma curva 1 (rápida; -0,25°C/min de 22°C até 5°C, com período de 20 minutos para estabilização, -33°C/min de 5°C até -80°C e, -10°C/min de -80°C para -120°C) e a outra para uma curva 2 (lenta; -0,25°C/min de 22°C até 5°C, com período de 20 minutos para estabilização, -15°C/min de 5°C até -80°C e, -10°C/min de -80°C até -120°C). Para realização do experimento foram utilizados 4 garanhões com 6 repetições. Os dados obtidos dos procedimentos experimentais foram analisados com auxílio do software Statistical Analysis System for Windows SAS®, versão 9.3 (SAS, 2005). Não houve diferença estatística significativa (P>0,05) entre as duas curvas de congelação usadas. No entanto, houve efeito de tempo (P<0,05) para todas as características estudadas. Quando foi analisado progressivamente a criopreservação in natura diluído, 5°C, -55°C e -196°C, foi observado que as lesões progrediram com a congelação. Entretanto, quando estudado, as etapas do processo de congelação, a refrigeração in natura diluído até 5°C, supercooling dentro da congelação de 5°C até -55°C e congelação -55°C até -196°C, assim, o citoesqueleto sofreu maior despolimerização durante a refrigeração, entretanto, a membrana acrossomal, sofreu danos reduzidos durante esta etapa. Para MPI e APM ocorreu maior porcentagem de redução da integridade no momento final da congelação -55°C até -196°C, assim, como PIAIA influenciada pela redução de MPI e APM, sofrerem mais injúrias, nessa etapa. De uma forma geral, o processo de congelação causa danos irreversíveis ao espermatozoide equino. Sendo que, a refrigeração causou maior despolimerização do citoesqueleto, porém, praticamente não afetou o acrossomo. A redução de células com MPI, APM e PIAIA, ocorre no momento final da congelação -55°C e -196°C. O acrossomo é a membrana que menos lesa com o processo de congelação. Também, observamos similaridade entre as curvas de congelação rápida (-33°C/min) e lenta (-15°C/min), para os parâmetros estudados. Assim, este estudo permitiu avaliar progressivamente a resposta biológica do espermatozoide durante a criopreservação, obtendo um compreensão dinâmica e quantitativa, dos momentos mais críticos para o espermatozoide, para as características avaliadas e técnicas utilizadas. / During the cryopreservation process the sperm cells undergo several physico-chemical changes, which can cause varying degrees of injury to the sperm cells. Determining the timing of the freezing process by which sperm is most susceptible to injury would be an important step in progressing the freezing process and thus fertilization. The objective was to evaluate the effect of the freezing process on the integrity of plasma membranes, acrosomal and mitochondrial potential (PIAIA) plasma membranes integrity (MPI), acrosomal (AI), mitochondrial potential (APM) and equine spermatozoa diluted in natura, 5°C, -55°C and -196°C. In addition to, study the steps of refrigeration, freezing and within freezing, the stage of supercooling. The freezing curves -15°C/min and -33°C/min during supercooling 5°C to -55°C were used to verify the effect of two freezing machines model TK 3000. For the development of the experiment, the semen was packed in 0.5mL straw with concentrations of 100x106 spermatozoa/straws and su-mitted to a curve 1 (fast; -0.25°C/min from 22°C to 5°C, with a period of 20 minutes for stabi-lization, -33°C/min from 5°C to -80°C and -10°C/min from -80°C to -120°C) and the other for a curve 2 (with a period of 20 minutes for stabilization, -15°C/min from -5°C to -80°C and -10°C/min from -80°C to -120°C). For the experiment, 4 stallions with 6 replicates were used. The data obtained from the experimental procedures were analyzed with the aid of Statistical Analysis System for Windows SAS®, version 9.3 (SAS, 2005). There was no significant statistical difference (P> 0.05) between the two freezing curves used. However, there was a time effect (P <0.05) for all the characteristics studied. When cryopreservation was progressively analyzed (semen extender, 5°C, -55°C and -196°C), it was observed that the lesions progressed with freezing. However, when studied, the steps of the freezing process, refrigeration (in natura diluted to 5°C), supercooling within freezing 5°C to -55°C and freezing -55°C to -196°C, thus, the cytoskeleton underwent greater depolymerization during refrigeration; however, the acrosomal membrane was almost not damaged during this stage. For MPI and APM, a higher percentage of integride reduction occurred at the final freezing point -55°C to -196°C, thus, as PIAIA, probably due to MPI and APM, suffered more injuries at this stage. In general, the freezing process causes irreversible damage to the equine sperm. Since, the refrigeration caused greater depolymerization of the cytoskeleton, however, it practically did not affect the acro-some. The reduction of cells with MPI, APM and PIAIA, occurs at the final moment of freezing -55°C and -196°C. The acrosome is the membrane that suffepe damages from freezing process. Also, similarities were observed between the freezing (-33°C/min) and slow (-15°C/min) freezing curves for the studied parameters. Thus, this study allowed to progressively evaluate the spermatozoid biological response during cryopreservation, obtaining a dynamic and quantita-tive understanding of the most critical mommies for the spermatozoon, for the evaluated para-meters and techniques used.
67

Influencias das variaveis de processo de congelamento na qualidade final de pão tipo frances pre-assado / Influence of freezing process variables on the final quality of pre-baked french bread

Ota, Eliza Mami 24 February 2006 (has links)
Orientador: Vivaldo Silveira Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-10-19T18:44:08Z (GMT). No. of bitstreams: 1 Ota_ElizaMami_M.pdf: 3040806 bytes, checksum: 227db951bd6e81777d068f2cbdd47982 (MD5) Previous issue date: 2006 / Resumo: A grande maioria das indústrias de panificação no Brasil utiliza processos tradicionais em suas linhas de produção, cujo tempo total aproximado, é de 4 a 6 horas. Uma nova tendência é a aplicação da refrigeração e do congelamento dos produtos de panificação, que visa reduzir os custos e a área de produção, e aumentar as áreas de comercialização. O trabalho propõe a análise da influência da variação das condições de processo (temperatura e velocidade do ar do túnel) no congelamento, com convecção forçada, de pães pré-assados formulados com e sem aditivos, avaliando-se as características físicas (umidade e volume específico) e estruturais (textura) dos produtos finais. Os ensaios experimentais foram realizados segundo planejamento experimental fatorial completo. Observou-se que durante o processo de congelamento, a taxa de calor diminuiu com o tempo. A temperatura do ar do túnel de congelamento foi o fator que mais influenciou na qualidade final do produto, sendo as temperaturas mais baixas as mais prejudiciais. Nos ensaios em que os produtos apresentaram semelhanças nas análises físicas e estruturais com os pães processados tradicionalmente, também não apresentaram diferenças na análise sensorial / Abstract: Most Brazilian bakery industries use traditional processes which takes 4 to 6 hours. A new tendency is the application of refrigeration and freezing in bakery products, which objective is to reduce costs and production area and to increase the commercialization area. This work proposes to study the influence of freezing process conditions (temperature and tunnel air velocity) with forced air of pre-baked breads formulated with and without additives, evaluating physical (moisture and specific volume) and structural characteristics (texture) of the final products. Experimental tests were done according to a complete factorial experimental design. During the freezing process, the heat rate decreased with time was verified. The air temperature in freezing tunnel was the factor which most influenced the product quality, being the lower temperatures, more deleterious is the quality. The tests in which products had physical and textural properties similar to traditionally processed breads showed no significant differences in sensorial attributes / Mestrado / Engenharia de Alimentos / Mestre em Engenharia de Alimentos
68

Cellular osmotic properties and cellular responses to cooling

Ross-Rodriguez, Lisa Ula 11 1900 (has links)
Recent advances in the fundamental theories in cryobiology using thermodynamic principles have created new opportunities for innovative methodologies in cryobiology. This thesis tested the hypothesis that calculated indicators of the two-factor hypothesis of cryoinjury, depending on cellular osmotic properties, will describe outcomes of cryobiological experiments. In addition, this thesis demonstrated that knowledge gained from improved descriptions of cellular osmotic parameters allows better understanding of cryoinjury and cryoprotection. The main objective of this thesis was to develop approaches using simulations that can be applied to development of cryopreservation procedures for cell types of interest for therapies. In order for this approach to be successful, a method to more accurately describe the osmotic solution properties of the cell (i.e. osmolality as a function of molality for the cytoplasm) was developed. Also, in-depth examination into the correlation between predictions of the two types of cryoinjury and measured post-thaw biological outcomes was required. The work presented in this thesis has shown that simulations, based on cell-specific osmotic characteristics, and coupled with interrupted cooling procedures can be used to determine conditions that minimize the two identified damaging factors in cryopreservation. Based on results from this research, both intracellular supercooling and osmolality, as indicators of intracellular ice formation and solution effects injury, respectively, should be calculated when attempting to compare simulations with biological experimentation. This thesis has also shown a novel method of obtaining the solution properties (i.e. osmolality as a function of molality) of the cytoplasm of living cells using equilibrium cell volume measurements. Using these newly calculated parameters, this research also demonstrated the magnitude of error introduced by making dilute solution assumptions of the solution properties in cellular responses to low temperatures, including simulations of interrupted freezing procedures. Overall, the research work presented in this thesis has extended the approach to cryopreservation to include the properties of the cell and the physical conditions of the freezing environment, which was only possible through the linkage between biological experimentation and simulations.
69

Nonlinear free boundary problems arising from soil freezing in a bounded region /

Mohamed, Fouad Abd El-Aal. January 1983 (has links)
Thesis (Ph. D.)--Oregon State University, 1983. / Typescript (photocopy). Includes bibliographical references (leaves 130-132). Also available on the World Wide Web.
70

Nucleation in gold nanoclusters

Mendez-Villuendas, Eduardo 16 March 2007
The goal of this work is to provide a detailed description of the freezing mechanism in gold clusters. This is accomplished by using constrained Monte Carlo simulations combined with parallel tempering algorithms to evaluate the free energy barriers for various temperatures with respect to crystalline order parameters on a 456 atom cluster. <p>Our simulation results help us to challenge the usual assumption of classic nucleation theory where nucleation starts at the center of a cluster, showing instead that nucleation is favored by freezing started at the surface. We study simplistic phenomenological models for surface freezing and find that the three phase contact line free energy term must be included in order to properly describe the features of the free energy barriers. <p>Furthermore, we propose an alternative free energy parameter with which we are able to identify a kinetic spinodal temperature where the nucleation barrier disappears and find that the critical cluster size remains finite at the limit of stability of the fluid phase. This result is supported by Molecular Dynamics simulations.

Page generated in 0.0431 seconds