• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 25
  • 18
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 142
  • 142
  • 79
  • 42
  • 42
  • 32
  • 22
  • 21
  • 20
  • 19
  • 19
  • 19
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Numerická simulace proudění stlačitelných tekutin pomocí multigridních metod / Numerical simulation of compressible flows with the aid of multigrid methods

Živčák, Andrej January 2012 (has links)
We deal with the numerical solution of the Navier-Stokes equations describing a motion of viscous compressible flows. The governing equations are discretized with the aid of discontinuous Galerkin finite element method which is based on a discontinuous piecewise polynomial approximation. The discretizations leads to a large nonlinear algebraic system. In order to solve this system efficiently, we develop the so-called p-multigrid solution strategy which employ as a projec- tion and a restriction operators the L2 -projection in the spaces of polynomial functions on each element separately. The p-multigrid technique is studied, deve- loped and implemented in the code ADGFEM. The computational performance of the method is presented.
32

Goal-oriented a posteriori error estimates and adaptivity for the numerical solution of partial differential equations / Goal-oriented a posteriori error estimates and adaptivity for the numerical solution of partial differential equations

Roskovec, Filip January 2019 (has links)
A posteriori error estimation is an inseparable component of any reliable numerical method for solving partial differential equations. The aim of the goal-oriented a posteriori error estimates is to control the computational error directly with respect to some quantity of interest, which makes the method very convenient for many engineering applications. The resulting error estimates may be employed for mesh adaptation which enables to find a numerical approximation of the quantity of interest under some given tolerance in a very efficient manner. In this thesis, the goal-oriented error estimates are derived for discontinuous Galerkin discretizations of the linear scalar model problems, as well as of the Euler equations describing inviscid compressible flows. It focuses on several aspects of the goal-oriented error estimation method, in particular, higher order reconstructions, adjoint consistency of the discretizations, control of the algebraic errors arising from iterative solutions of both algebraic systems, and linking the estimates with the hp-anisotropic mesh adaptation. The computational performance is demonstrated by numerical experiments.
33

Direct and Line Based Iterative Methods for Solving Sparse Block Linear Systems

Yang, Xiaolin January 2018 (has links)
No description available.
34

Numerical Representation of Crack Propagation within the Framework of Finite Element Method Using Cohesive Zone Model

Zhang, Wenlong 18 June 2019 (has links)
No description available.
35

Acceleration Methods of Discontinuous Galerkin Integral Equation for Maxwell's Equations

Lee, Chung Hyun 15 September 2022 (has links)
No description available.
36

A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws

Weinhart, Thomas 22 April 2009 (has links)
In this dissertation we present an analysis for the discontinuous Galerkin discretization error of multi-dimensional first-order linear symmetric and symmetrizable hyperbolic systems of conservation laws. We explicitly write the leading term of the local DG error, which is spanned by Legendre polynomials of degree p and p+1 when p-th degree polynomial spaces are used for the solution. For special hyperbolic systems, where the coefficient matrices are nonsingular, we show that the leading term of the error is spanned by (p+1)-th degree Radau polynomials. We apply these asymptotic results to observe that projections of the error are pointwise O(h<sup>p+2</sup>)-superconvergent in some cases and establish superconvergence results for some integrals of the error. We develop an efficient implicit residual-based a posteriori error estimation scheme by solving local finite element problems to compute estimates of the leading term of the discretization error. For smooth solutions we obtain error estimates that converge to the true error under mesh refinement. We first show these results for linear symmetric systems that satisfy certain assumptions, then for general linear symmetric systems. We further generalize these results to linear symmetrizable systems by considering an equivalent symmetric formulation, which requires us to make small modifications in the error estimation procedure. We also investigate the behavior of the discretization error when the Lax-Friedrichs numerical flux is used, and we construct asymptotically exact a posteriori error estimates. While no superconvergence results can be obtained for this flux, the error estimation results can be recovered in most cases. These error estimates are used to drive h- and p-adaptive algorithms and assess the numerical accuracy of the solution. We present computational results for different fluxes and several linear and nonlinear hyperbolic systems in one, two and three dimensions to validate our theory. Examples include the wave equation, Maxwell's equations, and the acoustic equation. / Ph. D.
37

A Galerkin Approach to Define Measured Terrain Surfaces with Analytic Basis Vectors to Produce a Compact Representation

Chemistruck, Heather Michelle 03 December 2010 (has links)
The concept of simulation-based engineering has been embraced by virtually every research and industry sector (Sinha, Liang et al. 2001; Mocko and Fenves 2003). Engineering and science communities have become increasingly aware that computer simulation is an indispensable tool for resolving a multitude of scientific and technological problems. It is clearly desirable to gain a reliable perspective on the behaviour of a system early in the design stage, long before building costly prototypes (Chul and Ro 2002; Letherwood, Gunter et al. 2004; Makarand Datar 2007; Ersal, Fathy et al. 2008; Mueller, Ferris et al. 2009). Simulation tools have become a critical part of the automotive industry due to their ability to reduce the time and money spent in the development process. Terrain is the principle source of vertical excitation to the vehicle and must be accurately represented in order to correctly predict the vehicle response in simulation. In this dissertation, non-deformable terrain surfaces are defined as a sequence of vectors, where each vector comprises terrain heights at locations oriented perpendicular to the direction of travel. The evolution and implications of terrain surface measurement techniques and existing methods for correcting INS drift are reviewed as a framework for a new compensation method for INS drift in terrain surface measurements. Each measurement is considered a combination of the true surface and the error surface, defined on a Hilbert vector space, in which the error is decomposed into drift (global error) and noise (local error). It is also desirable to develop a compact, path-specific, terrain surface representation that exploits the inherent anisotropicity in terrain over which vehicles traverse. In order to obtain this, a set of analytic basis vectors is formed from Gegenbauer polynomials, parameterized to approximate the empirical basis vectors of the true terrain surface. It is also desirable to evaluate vehicle models and tire models over a wide range of terrain types, but it is computationally impractical to store long distances of every terrain surface variation. This dissertation examines the terrain surface, rather than the terrain profile, to maximize the information available to the tire model (i.e. wheel path data). A method to decompose the terrain surface as a combination of deterministic and stochastic components is also developed. / Ph. D.
38

A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral Meshes

Mechaii, Idir 26 April 2012 (has links)
In this thesis, we present a simple and efficient \emph{a posteriori} error estimation procedure for a discontinuous finite element method applied to scalar first-order hyperbolic problems on structured and unstructured tetrahedral meshes. We present a local error analysis to derive a discontinuous Galerkin orthogonality condition for the leading term of the discretization error and find basis functions spanning the error for several finite element spaces. We describe an implicit error estimation procedure for the leading term of the discretization error by solving a local problem on each tetrahedron. Numerical computations show that the implicit \emph{a posteriori} error estimation procedure yields accurate estimates for linear and nonlinear problems with smooth solutions. Furthermore, we show the performance of our error estimates on problems with discontinuous solutions. We investigate pointwise superconvergence properties of the discontinuous Galerkin (DG) method using enriched polynomial spaces. We study the effect of finite element spaces on the superconvergence properties of DG solutions on each class and type of tetrahedral elements. We show that, using enriched polynomial spaces, the discretization error on tetrahedral elements having one inflow face, is O(h^{p+2}) superconvergent on the three edges of the inflow face, while on elements with one inflow and one outflow faces the DG solution is O(h^{p+2}) superconvergent on the outflow face in addition to the three edges of the inflow face. Furthermore, we show that, on tetrahedral elements with two inflow faces, the DG solution is O(h^{p+2}) superconvergent on the edge shared by two of the inflow faces. On elements with two inflow and one outflow faces and on elements with three inflow faces, the DG solution is O(h^{p+2}) superconvergent on two edges of the inflow faces. We also show that using enriched polynomial spaces lead to a simpler{a posterior error estimation procedure. Finally, we extend our error analysis for the discontinuous Galerkin method applied to linear three-dimensional hyperbolic systems of conservation laws with smooth solutions. We perform a local error analysis by expanding the local error as a series and showing that its leading term is O( h^{p+1}). We further simplify the leading term and express it in terms of an optimal set of polynomials which can be used to estimate the error. / Ph. D.
39

Immersed Discontinuous Galerkin Methods for Acoustic Wave Propagation in Inhomogeneous Media

Moon, Kihyo 03 May 2016 (has links)
We present immersed discontinuous Galerkin finite element methods for one and two dimensional acoustic wave propagation problems in inhomogeneous media where elements are allowed to be cut by the material interface. The proposed methods use the standard discontinuous Galerkin finite element formulation with polynomial approximation on elements that contain one fluid while on interface elements containing more than one fluid they use specially-built piecewise polynomial shape functions that satisfy appropriate interface jump conditions. The finite element spaces on interface elements satisfy physical interface conditions from the acoustic problem in addition to extended conditions derived from the system of partial differential equations. Additional curl-free and consistency conditions are added to generate bilinear and biquadratic piecewise shape functions for two dimensional problems. We established the existence and uniqueness of one dimensional immersed finite element shape functions and existence of two dimensional bilinear immersed finite element shape functions for the velocity. The proposed methods are tested on one dimensional problems and are extended to two dimensional problems where the problem is defined on a domain split by an interface into two different media. Our methods exhibit optimal $O(h^{p+1})$ convergence rates for one and two dimensional problems. However it is observed that one of the proposed methods is not stable for two dimensional interface problems with high contrast media such as water/air. We performed an analysis to prove that our immersed Petrov-Galerkin method is stable for interface problems with high jumps across the interface. Local time-stepping and parallel algorithms are used to speed up computation. Several realistic interface problems such as ether/glycerol, water/methyl-alcohol and water/air with a circular interface are solved to show the stability and robustness of our methods. / Ph. D.
40

Numerical Simulations of Viscoelastic Flows Using the Discontinuous Galerkin Method

Burleson, John Taylor 30 August 2021 (has links)
In this work, we develop a method for solving viscoelastic fluid flows using the Navier-Stokes equations coupled with the Oldroyd-B model. We solve the Navier-Stokes equations in skew-symmetric form using the mixed finite element method, and we solve the Oldroyd-B model using the discontinuous Galerkin method. The Crank-Nicolson scheme is used for the temporal discretization of the Navier-Stokes equations in order to achieve a second-order accuracy in time, while the optimal third-order total-variation diminishing Runge-Kutta scheme is used for the temporal discretization of the Oldroyd-B equation. The overall accuracy in time is therefore limited to second-order due to the Crank-Nicolson scheme; however, a third-order Runge-Kutta scheme is implemented for greater stability over lower order Runge-Kutta schemes. We test our numerical method using the 2D cavity flow benchmark problem and compare results generated with those found in literature while discussing the influence of mesh refinement on suppressing oscillations in the polymer stress. / Master of Science / Viscoelastic fluids are a type of non-Newtonian fluid of great importance to the study of fluid flows. Such fluids exhibit both viscous and elastic behaviors. We develop a numerical method to solve the partial differential equations governing viscoelastic fluid flows using various finite element methods. Our method is then validated using previous numerical results in literature.

Page generated in 0.0492 seconds