Spelling suggestions: "subject:"convergence""
1 |
Finite element recovery techniques in adaptive error controlLakhany, Asif January 1995 (has links)
No description available.
|
2 |
Modélisation de processus cancéreux et méthodes superconvergentes de résolution de problèmes d'interface sur grille cartésienne / Modeling of cancer phenomena and superconvergent methods for the resolution of interface problems on Cartesian gridGallinato Contino, Olivier 22 November 2016 (has links)
Cette thèse présente des travaux concernant des phénomènes d'invasion tumorale, aux échelles tissulaire et cellulaire. La première partie est consacrée à deux modèles mathématiques continus. Le premier est un modèle macroscopique de croissance d'un cancer du sein qui se focalise sur la description du passage du stade in situ au stade invasif. Basé sur des équations d'advection d'espèces cellulaires, il tient compte de la géométrie et de l'éventuelle dégradation des tissus, dans le cas où la tumeur produit des enzymes protéolytiques qui permettent l'invasion. Le second modèle concerne le phénomène d'invadopodia, à l'échelle de la cellule. C'est un problème d'interface mobile qui décrit le changement de morphologie des cellules pré-métastatiques qui leur permet de dégrader les tissus pour migrer dans le reste de l'organisme. Chacun de ces deux modèles tient compte des couplages forts inhérents au phénomènes biologiques en jeu.La seconde partie est consacrée aux méthodes numériques développées pour résoudre ces deux problèmes et surmonter les difficultés liées aux couplages et non linéarités. Elles sont construites sur grille cartésienne uniforme, à partir des différences finies et d'une version stabilisée de la méthode Ghost fluid. Leur particularité est de tirer pleinement parti des propriétés de superconvergence de la solution du problème de Poisson, spécifiquement étudiées afin d'aboutir à la résolution des problèmes de cancer du sein et d'invadopodia à l'ordre un ou deux, en fonction de la précision désirée. Cesméthodes peuvent également être utilisées pour résoudre d'autres problèmes d'interface mobile. / In this thesis, we present a study about phenomena of tumor invasion, at the tissues and cell scales.The first part is devoted to two continuous mathematical models. The first one is a macroscopic model for breast cancer growth, which focuses on the transition between the stage in situ and the invasive phase of growth. This model is based on advection equations for cellular species. The geometry and possible tissue damage are taken into account. Invasion occurs when the tumor cells produce proteolytic enzymes. The second model deals with the phenomenon of invadopodia, at the cell scale.This is a free boundary problem, which describes the change in morphology of pre-metastatic cells,enabling them to degrade the tissues and migrate into the rest of the body. Each of these models reflects the strong coupling of biological phenomena.The second part is devoted to numerical methods specifically developed to solve these problems and overcome coupling and nonlinearities. They are built on uniform Cartesian grids, thanks to the finite difference method, and a stabilized version of the Ghost fluid method. Their peculiarity is to take full advantage of superconvergence properties of the Poisson problem solution. These properties are specifically studied, leading to the first or second order numerical computation of the problems ofbreast cancer and invadopodia, depending on the desired accuracy. These methods can also be used to solve other free boundary problems.
|
3 |
Sur les propriétés de superconvergence des solutions approchées de certaines équations intégrales et différentiellesLebbar, Rachid 29 September 1981 (has links) (PDF)
La solution projection itérée pour l'équation intégrale de Fredholm de seconde espèce. Résultats de superconvergence pour la methode de projection itérée appliquée à une équation intégrale de Fredholm de 2ème espèce et problème aux valeurs propres. Résultats de superconvergence pour des problèmes aux valeurs propres différentiels : une methode de Galerkin sur la formulation intégrale. Superconvergence des vecteurs propres généralisés d'opérateurs différentiels et intégraux aux nœuds.
|
4 |
Superconvergence and A posteriori Error Estimation for the Discontinuous Galerkin Method Applied to Hyperbolic Problems on Triangular MeshesBaccouch, Mahboub 31 March 2008 (has links)
In this thesis, we present new superconvergence properties of discontinuous Galerkin (DG) methods for two-dimensional hyperbolic problems. We investigate the superconvergence properties of the DG method applied to scalar first-order hyperbolic partial differential equations on triangular meshes. We study the effect of finite element spaces on the superconvergence properties of DG solutions on three types of triangular elements. Superconvergence is described for structured and unstructured meshes. We show that the DG solution is O(hp+1) superconvergent at Legendre points on the outflow edge on triangles having one outflow edge using three p- degree polynomial spaces. For triangles having two outflow edges the finite element error is O(hp+1) superconvergent at the end points of the inflow edge for an augmented space of degree p. Furthermore, we discovered additional mesh-orientation dependent superconvergence points in the interior of triangles. The dependence of these points on orientation is explicitly given. We also established a global superconvergence result on meshes consisting of triangles having one inflow and one outflow edges.
Applying a local error analysis, we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of hyperbolic problems on triangular meshes. A posteriori error estimates are needed to guide adaptive enrichment and to provide a measure of solution accuracy for any numerical method. We develop an inexpensive superconvergence-based a posteriori error estimation technique for the DG solutions of conservation laws. We explicitly write the basis functions for the error spaces corresponding to several finite element solution spaces. The leading term of the discretization error on each triangle is estimated by solving a local problem where no boundary conditions are needed. The computed error estimates are shown to converge to the true error under mesh refinement in smooth solution regions. We further present a numerical study of superconvergence properties for the DG method applied to time-dependent convection problems. We also construct asymptotically correct a posteriori error estimates by solving local hyperbolic problems with no boundary conditions on general unstructured meshes. The global superconvergence results are numerically confirmed. Finally, the a posteriori error estimates are tested on several linear and nonlinear problems to show their efficiency and accuracy under mesh refinement. / Ph. D.
|
5 |
A Discontinuous Galerkin Method for Higher-Order Differential Equations Applied to the Wave EquationTemimi, Helmi 02 April 2008 (has links)
We propose a new discontinuous finite element method for higher-order initial value problems where the finite element solution exhibits an optimal convergence rate in the L2- norm. We further show that the q-degree discontinuous solution of a differential equation of order m and its first (m-1)-derivatives are strongly superconvergent at the end of each step. We also establish that the q-degree discontinuous solution is superconvergent at the roots of (q+1-m)-degree Jacobi polynomial on each step.
Furthermore, we use these results to construct asymptotically correct a posteriori error estimates. Moreover, we design a new discontinuous Galerkin method to solve the wave equation by using a method of lines approach to separate the space and time where we first apply the classical finite element method using p-degree polynomials in space to obtain a system of second-order ordinary differential equations which is solved by our new discontinuous Galerkin method. We provide an error analysis for this new method to show that, on each space-time cell, the discontinuous Galerkin finite element solution is superconvergent at the tensor product of the shifted roots of the Lobatto polynomials in space and the Jacobi polynomial in time. Then, we show that the global L2 error in space and time is convergent. Furthermore, we are able to construct asymptotically correct a posteriori error estimates for both spatial and temporal components of errors. We validate our theory by presenting several computational results for one, two and three dimensions. / Ph. D.
|
6 |
hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transportConroy, Colton J. January 2014 (has links)
No description available.
|
7 |
A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation LawsWeinhart, Thomas 22 April 2009 (has links)
In this dissertation we present an analysis for the discontinuous Galerkin discretization error of multi-dimensional first-order linear symmetric and symmetrizable hyperbolic systems of conservation laws. We explicitly write the leading term of the local DG error, which is spanned by Legendre polynomials of degree p and p+1 when p-th degree polynomial spaces are used for the solution. For special hyperbolic systems, where the coefficient matrices are nonsingular, we show that the leading term of the error is spanned by (p+1)-th degree Radau polynomials. We apply these asymptotic results to observe that projections of the error are pointwise O(h<sup>p+2</sup>)-superconvergent in some cases and establish superconvergence results for some integrals of the error. We develop an efficient implicit residual-based a posteriori error estimation scheme by solving local finite element problems to compute estimates of the leading term of the discretization error. For smooth solutions we obtain error estimates that converge to the true error under mesh refinement. We first show these results for linear symmetric systems that satisfy certain assumptions, then for general linear symmetric systems. We further generalize these results to linear symmetrizable systems by considering an equivalent symmetric formulation, which requires us to make small modifications in the error estimation procedure. We also investigate the behavior of the discretization error when the Lax-Friedrichs numerical flux is used, and we construct asymptotically exact a posteriori error estimates. While no superconvergence results can be obtained for this flux, the error estimation results can be recovered in most cases. These error estimates are used to drive h- and p-adaptive algorithms and assess the numerical accuracy of the solution. We present computational results for different fluxes and several linear and nonlinear hyperbolic systems in one, two and three dimensions to validate our theory. Examples include the wave equation, Maxwell's equations, and the acoustic equation. / Ph. D.
|
8 |
A Posteriori Error Analysis for a Discontinuous Galerkin Method Applied to Hyperbolic Problems on Tetrahedral MeshesMechaii, Idir 26 April 2012 (has links)
In this thesis, we present a simple and efficient \emph{a posteriori} error estimation procedure for a discontinuous finite element method applied to scalar first-order hyperbolic problems on structured and unstructured tetrahedral meshes. We present a local error analysis to derive a discontinuous Galerkin orthogonality condition for the leading term of the discretization error and find basis functions spanning the error for several finite element spaces. We describe an implicit error estimation procedure for the leading term of the discretization error by solving a local problem on each tetrahedron. Numerical computations show that the implicit \emph{a posteriori} error estimation procedure yields accurate estimates for linear and nonlinear problems with smooth solutions. Furthermore, we show the performance of our error estimates on problems with discontinuous solutions.
We investigate pointwise superconvergence properties of the discontinuous Galerkin (DG) method using enriched polynomial spaces. We study the effect of finite element spaces on the superconvergence properties of DG solutions on each class and type of tetrahedral elements. We show that, using enriched polynomial spaces, the discretization error on tetrahedral elements having one inflow face, is O(h^{p+2}) superconvergent on the three edges of the inflow face, while on elements with one inflow and one outflow faces the DG solution is O(h^{p+2}) superconvergent on the outflow face in addition to the three edges of the inflow face. Furthermore, we show that, on tetrahedral elements with two inflow faces, the DG solution is O(h^{p+2}) superconvergent on the edge shared by two of the inflow faces. On elements with two inflow and one outflow faces and on elements with three inflow faces, the DG solution is O(h^{p+2}) superconvergent on two edges of the inflow faces. We also show that using enriched polynomial spaces lead to a simpler{a posterior error estimation procedure.
Finally, we extend our error analysis for the discontinuous Galerkin method applied to linear three-dimensional hyperbolic systems of conservation laws with smooth solutions. We perform a local error analysis by expanding the local error as a series and showing that its leading term is O( h^{p+1}). We further simplify the leading term and express it in terms of an optimal set of polynomials which can be used to estimate the error. / Ph. D.
|
9 |
Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov / Numerical methods for the gyroaverage operator, advection schemes and coupling : applications to the Vlasov equationSteiner, Christophe 11 December 2014 (has links)
Cette thèse propose et analyse des méthodes numériques pour la résolution de l'équation de Vlasov. Cette équation modélise l'évolution d'une espèce de particules chargées sous l'effet d'un champ électromagnétique. La première partie est consacrée à une analyse mathématique de schémas semi-Lagrangiens résolvant l'équation de transport linéaire qui constituent la brique de base des méthodes de splitting directionnel.Des méthodes de résolution de l'équation de Vlasov couplée à l'équation de Poisson, dans le cas où uniquement le champ électrique est considéré, sont optimisées dans la seconde partie. Il s'agit d'optimisation en temps de calcul par l'utilisation de cartes graphiques (GPU) et l'utilisation d'un maillage non homogène.Dans la troisième et dernière partie, nous étudierons une méthode numérique de calcul de l'opérateur de gyromoyenne intervenant dans la théorie gyrocinétique que nous appliquerons à l'équation de quasi-neutralité. / This thesis proposes and analyzes numerical methods for solving the Vlasov equation. This equation models the evolution of a species of charged particles under the effet of an electromagnetic field. The first part is devoted to a mathematical analysis of semi-Lagrangian schemes solving the linear transport equation which is the basic building block of directional splitting methods.Solving methods for the Vlasov equation coupled to the Poisson equation, in the case where only the electric field is considered, are optimized in the second part. This optimization relates to the time of calculation by the use of Graphics Processing Unit (GPU) and the use of an inhomogeneous mesh.In the third and final part, we study a numerical method for calculating the gyroaverage operator involved in gyrokinetic theory. This method will be applied to solve the quasi-neutrality equation.
|
10 |
Global Superconvergence of Finite Element Methods for Elliptic EquationsHuang, Hung-Tsai 06 June 2003 (has links)
In the dissertation we discuss the rectangular elements, Adini's elements and $p-$order Lagrange elements, which were constructed in the rectangular finite spaces. The special rectangular partitions enable the finite element solutions $u_h$ more efficient in interpolation of the true solution for Elliptic equation $u_I$. The convergence rates of $|u_h-u_I|_1$ are one or two orders higher than the optimal convergence rates. For post-processings we construct higher order interpolation operation $Pi_p$ to reach superconvergence $|u-Pi_p u_h|_1$. To our best knowledge, we at the first time provided the a posteriori interpolant formulas of Adini's elements and biquadratic Lagrange elements to obtain the global superconvergence, and at the first time reported the numerical verification for supercloseness $O(h^4)-O(h^5) $, global superconvergence $O(h^5)$ in $H^1$-norm and the high rates $O(h^6|ln h|)$ in the infinity norm for Poisson's equation(i.e., $-Delta u = f$).
Since the finite element methods is fail to deal with the singularity problems, in the dissertation, the combinations of the Ritz-Galerkin method and the finite element methods are used for the singularity problem, i.e., Motz's problem. To couple two methods along their common boundary, we adopt the simplified hybrid, penalty, and penalty plus hybrid techniques. The analysis are made in the dissertation to derive the almost best global superconvergence $O(h^{p+2-delta})$ in $H^1$-norm, $0<delta << 1$, for the combination using $p(geq 2)$-rectangles in the smooth subdomain, and the best global superconvergence $O(h^{3.5})$ in $H^1$-norm for combinations of Adini's elements in the smooth subdomain. The numerical experiments have been carried out for the combinations of the Ritz-Galerkin method and Adini's elements, to verify the theoretical superconvergence derived.
|
Page generated in 0.0622 seconds