• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 74
  • 43
  • 39
  • 32
  • 17
  • 13
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 672
  • 271
  • 196
  • 118
  • 110
  • 100
  • 87
  • 75
  • 68
  • 68
  • 65
  • 63
  • 56
  • 56
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Steam gasification of tropical lignocellulosic agrowaste : impact of biomass characteristics on the gaseous and solid by-products / Gazéification sous vapeur d’eau de résidus agricoles : impact des caractéristiques de la biomasse sur les propriétés des sous-produits gazeux et solides

Romero Millán, Lina 28 November 2018 (has links)
Dans le contexte économique de la plupart des pays en voie de développement, la gazéification sous vapeur d’eau de résidus agricoles lignocellulosiques pourrait être un procédé intéressant, à la fois pour la génération d’énergie dans des régions isolées et pour la production des produits à valeur ajoutée. Étant donné que la disponibilité des résidus agricoles est souvent saisonnière, différents types de biomasse doivent être utilisés pour assurer le fonctionnement des installations de gazéification. A cet égard, ce travail est axé sur la compréhension de l'impact des caractéristiques de la biomasse sur le procédé de gazéification et les propriétés des sous-produits gazeux et solides. Trois biomasses lignocellulosiques à composition macromoléculaire et inorganique différentes ont été sélectionnées pour cette étude : coques de noix de coco (CS), bambou guadua (BG) et coques de palmier à huile (OPS). La cinétique de décomposition thermique des biomasses a été étudiée sur une échelle thermogravimétrique sous atmosphère inerte et sous vapeur d’eau. Malgré les différences dans la structure macromoléculaire des échantillons, la composition inorganique s’est avérée être le paramètre le plus important influençant la réactivité et la cinétique de gazéification. L'impact bénéfique des métaux alcalins et alcalino-terreux a été confirmé, ainsi que l'effet inhibiteur du Si et du P. Plus précisément, le ratio K/(Si+P) est considéré approprié pour décrire et comparer le comportement des biomasses pendant la gazéification sous vapeur d’eau. En conséquence, une nouvelle approche pour la modélisation de la cinétique de gazéification à partir de la composition inorganique de l’échantillon a été proposée. La validité du ratio K/(Si+P) pour classifier et prédire le comportement des biomasses a également été confirmée par des expériences dans un réacteur à lit fluidisé à l’échelle laboratoire. Les échantillons avec un ratio K/(Si+P) au-dessus de 1 ont montré des réactivités de gazéification supérieures à celles des échantillons dont le ratio était inférieur à 1, et donc, une production de gaz et un rendement énergétique plus élevés. De plus, la composition inorganique a non seulement impacté le taux de gazéification des échantillons, mais également les propriétés du sous-produit solide. En particulier, une réactivité de gazéification plus élevée est liée à des chars avec une surface spécifique et un nombre de groupes fonctionnels plus importants. Une température de 850°C et une fraction de vapeur de 30% dans l’agent de réaction ont été identifiées comme les conditions les plus adaptées à la production simultanée de gaz combustible et de char pouvant être valorisé dans des applications agricoles. Le modèle de gazéification sous vapeur d'eau et les résultats expérimentaux présentés dans ce travail peuvent être une référence pour des applications réelles de gazéification travaillant avec différents types de résidus. Par ailleurs, dans le contexte présenté, la gazéification sous vapeur d’eau de déchets lignocellulosiques peut améliorer l’accès à l’énergie des zones rurales isolées, en promouvant simultanément le développement de projets productifs susceptibles de générer de nouveaux revenus pour les communautés locales. / In the context of most developing countries, steam gasification could be a very interesting process for both energy generation in isolated areas and the production of value-added products from lignocellulosic agrowaste. Considering that the availability of agricultural residues is often seasonal, gasification facilities should operate with different feedstocks. In consequence, this work is focused on the understanding of the impact of biomass characteristics on the gasification process and the properties of the gaseous and solid by-products. Three lignocellulosic agrowastes with different macromolecular structure and inorganic composition were selected for this study: Coconut shells (CS), bamboo guadua (BG) and oil palm shells (OPS). The thermal decomposition kinetics of the selected feedstocks was analyzed in a thermogravimetric scale under inert and steam atmosphere. Despite the differences in their macromolecular composition, inorganics showed to be the most important parameter influencing the steam gasification reactivity and kinetics of the samples. The beneficial impact of AAEM was confirmed, as well as the inhibitory effect of Si and P. More specifically, the ratio K/(Si+P) proved to be suitable to describe and compare the steam gasification behavior of lignocellulosic agrowastes. In accordance, a new kinetic modeling approach was proposed to predict the gasification behavior of samples, from the knowledge of their inorganic composition. The validity of the ratio K/(Si+P) to classify and predict the biomass steam gasification behavior was also confirmed from experiments in a lab-scale fluidized bed gasifier. Samples with K/(Si+P) above 1 exhibited higher gasification reactivities compared to samples with ratios below 1, resulting in greater gas yields and higher gas efficiencies. Moreover, inorganics impacted not only the gasification rate of the samples, but also the properties of the gasification solid by-products. In particular, higher gasification reactivities were related to greater char surface areas and contents of oxygenated surface functional groups. A temperature of 850°C and a steam fraction of 30% in the reacting atmosphere proved to be the most suitable gasification conditions for the simultaneous production of fuel gases for energy applications, and a valuable char that could be valorized in soil amendment applications. The gasification model and experimental results presented in this work might be an important reference for real gasification applications working with different kind of residues, when both the gaseous and solid by-products valorization is intended. Moreover, in the presented context, steam gasification of lignocellulosic agrowaste may improve the energy access in rural isolated areas, and simultaneously promote the development of productive projects that could generate new incomes for local communities.
272

Expermental and Modeling Studies on the Generation of Hydrogen Rich Syngas through Oxy-Steam Gasification of Biomass

Sandeep, Kumar January 2016 (has links) (PDF)
The present work focuses on the study of biomass gasification process for generating hydrogen rich synthetic gas with oxy-steam as reactants using experiments and modeling studies. Utilization of the syngas as a fuel in general applications like fuel cells, Fischer-Tropsch FT) process and production of various chemicals like DME, etc. are being considered to meet the demand for clean energy. This study comprises of experiments using an open top down draft reactor with oxygen and steam as reactants in the co-current configuration. Apart from the standard gasification performance evaluation; parametric study using equivalence ratio, steam-to-biomass ratio as major variables towards generation of syngas is addressed towards controlling H2/CO ratio. The gasification process is modeled as a packed bed reactor to predict the exit gas composition, propagation rate, bed temperature as a function of input reactants, temperature and mass flux with variation in thermo-physical properties of biomass. These results are compared with the present experiments as well as those in literature. Experiments are conducted using modified open top downdraft configuration reactor with lock hoppers and provision for oxy-steam injection, and the exit gas is connected to the cooling and cleaning system. The fully instrumented system is used to measure bed temperatures, steam and exit gas temperature, pressures at various locations, flow rates of fuel, reactants and product gas along with the gas composition. Preliminary investigations focused on using air as the reactant and towards establishing the packed bed performance by comparing with the experimental results from the literature and extended the study to O2-N2 mixtures. The study focuses on determining the propagation rate of the flame front in the packed bed reactor for various operating conditions. O2 is varied between 20-100% (vol.) in a mixture of O2-N2 to study the effect of O2 fraction on flame propagation rate and biomass conversion. With the increase in O2 fraction, the propagation rates are found to be very high and reaching over 10 mm/s, resulting in incomplete pyrolysis and poor biomass conversion. The flame propagation rate is found to vary with oxygen volume fraction as XO22.5, and stable operation is achieved with O2 fraction below 30%. Towards introducing H2O as a reactant for enhancing the hydrogen content in the syngas and also to reduce the propagation rates at higher ER, wet biomass is used. Stable operating conditions are achieved using wet biomass with moisture-to-biomass (H2O:Biomass) ratio between 0.6 to 1.1 (mass basis) and H2 yield up to 63 g/kg of dry biomass amounting to 33% volume fraction in the syngas. Identifying the limitation on the hydrogen yield and the criticality of achieving high quality gas; oxy-steam mixture is introduced as reactants with dry biomass as fuel. An electric boiler along with a superheater is used to generate superheated steam upto 700 K and pressure in the range of 0.4 MPa. Steam-to-biomass ratio (SBR) and ER is varied with towards generating hydrogen rich syngas with sustained continuous operation of oxy-steam gasification of dry biomass. The results are analysed with the variation of SBR for flame propagation rates, calorific value of product syngas, energy efficiency, H2 yield per kg of biomass and H2/CO ratio. Hydrogen yield of 104 g per kg of dry casuarina wood is achieved amounting to 50.5% volume fraction in dry syngas through oxy-steam gasification process compared to air gasification hydrogen yield of about 40 g per kg of fuel and 20% volume fraction. First and second law analysis for energy and exergy efficiency evaluation has been performed on the experimental results and compared with air gasification. Individual components of the energy input and output are analysed and discussed. H2 yield is found to increase with SBR with the reduction in energy density of syngas and also energy efficiency. Highest energy efficiency of 80.3% has been achieved at SBR of 0.75 (on molar basis) with H2 yield of 66 g/kg of biomass and LHV of 8.9 MJ/Nm3; whereas H2 yield of 104 g/kg of biomass is achieved at SBR of 2.7 with the lower efficiency of 65.6% and LHV of 7.4 MJ/Nm3. The energy density of the syngas achieved in the present study is roughly double compared to the LHV of typical product gas with air gasification. Elemental mass balance technique has been employed to identify carbon boundary at an SBR of 1.5. Controlling parameters for arriving at the desired H2/CO ratio in the product syngas have been identified. Optimum process parameters (ER and SBR) has been identified through experimental studies for sustained continuous oxy-steam gasification process, maximizing H2 yield, controlling the H2/CO ratio, high energy efficiency and high energy density in the product syngas. Increase in ER with SBR is required to compensate the reduction in O2 fraction in oxy-steam mixture and to maintain the desired bed temperature in the combustion zone. In the range of SBR of 0.75 to 2.7, ER requirement increases from 0.18 to 0.3. The sustained continuous operation is possible upto SBR of 1.5, till the carbon boundary is reached. Operating at high SBR is required for high H2 yield but sustained highest H2 yield is obtained as SBR of 1.5. H2/CO ratio in the syngas increases from 1.5 to 4 with the SBR and depending on the requirement of the downstream process (eg., FT synthesis), suitable SBR and ER combination is suggested. To obtain high energy density in syngas and high energy efficiency, operations at lower SBR is recommended. The modeling study is the extension of the work carried by Dasappa (1999) by incorporating wood pyrolysis model into the single particle and volatile combustion for the packed bed of particles. The packed bed reactor model comprises of array of single particles stacked in a vertical bed that deals with the detailed reaction rates along with the porous char spheres and thermo-physical phenomenon governed by the mass, species and energy conservation equations. Towards validating the pyrolysis and single particle conversion process, separate analysis and parametric study addressing the effects of thermo-physical parameters like particle size, density and thermal conductivity under varying conditions have been studied and compared with the available results from literature. It has been found that the devolatilisation time of particle (tc) follows closely the relationship with the particle diameter (d), thermal conductivity (k), density () and temperature (T) as: The complete combustion of a single particle flaming pyrolysis and char combustion has been studied and validated with the experimental results. For the reactor modeling, energy, mass and species conservation equations in the axial flow direction formulate the governing equations coupled to the detailed single particle analysis. Gas phase reactions involving combustion of volatiles and water gas shift reaction are solved in the packed bed. The model results are compared with the experimental results from wood gasification system with respect to the propagation rate, conversion times, exit gas composition and other bed parameters like conversion, peak bed temperatures, etc. The propagation rates compare well with experimental data over a range of oxygen concentration in the O2- N2 mixture, with a peak at 10 mm/s for 100 % O2. In the case of oxy-steam gasification of dry biomass, the results clearly suggest that the char conversion is an important component contributing to the bed movement and hence the overall effective propagation rate is an important parameter for co-current reactors. This is further analyzed using the carbon boundary points based on elemental balance technique. The model predictions for the exit gas composition from the oxy-steam gasification matches well with the experimental results over a wide range of equivalence ratio and steam to biomass ratio. The output gas composition and propagation rates are found to be a direct consequence of input mass flux and O2 fraction in oxy-steam mixture. The present study comprehensively addresses the oxy-steam gasification towards generating hydrogen rich syngas using experimental and model studies. The study also arrives at the parameters for design consideration towards operating an oxy-steam biomass gasification system. The following flow chart provides the overall aspects that are covered in the thesis chapter wise.
273

Pressure Effects on Black Liquor Gasification

Young, Christopher Michael 03 July 2006 (has links)
Gasification of black liquor is an alternative to the combustion of black liquor, which is currently the dominant form of chemical recovery in the paper industry. Gasification of black liquor offers the possibility of higher thermal efficiencies than combustion, reducing manufacturing costs and creating new revenue streams through a forest biorefinery. Pressurizing the gasification reactor further enhances the efficiency advantage of gasification over combustion. This study uses a pressurized entrained flow reactor (PEFR) to study black liquor gasification behavior under pressures, temperatures, and heating rates similar to those of next-generation high-temperature black liquor gasifiers. The effects of pressure on black liquor char morphology, gasification rates, pyrolysis carbon yields, and sulfur phase distribution were studied. These characteristics were investigated in three main groups of experiments at 900oC: pyrolysis (100% N2), gasification with constant partial pressure (0.25 bar H2O and 0.50 bar CO2), and gasification with constant mole fraction (10% CO2, 2% H2O, 1.7% CO, 0.3% H2), under five, ten, and fifteen bar total pressure. It was found that pressure had an impact on the char physical characteristics immediately after the char entered the reactor. Increasing pressure had the effect of decreasing the porosity of the chars. Pressure also affected particle destruction and reagglomeration mechanisms. Surface areas of gasification chars decreased with increasing pressures, but only at low carbon conversions. The rate of carbon conversion in gasification was shown to be a function of the gas composition near the particle, with higher levels of inhibiting gases slowing carbon conversion. The same phenomenon of product gas inhibition observed in gasification was used to explain carbon conversions in pyrolysis reactions. Sulfur distribution between condensed and gas phases was unaffected by increasing total pressure in the residence times investigated. Significant amounts of sulfur are lost during initial devolatilization. With water present this gas phase sulfur forms H2S and did not return to the condensed phase.
274

Internal Tar/CH4 Reforming in Biomass Dual Fluidised Bed Gasifiers towards Fuel Synthesis

Göransson, Kristina January 2014 (has links)
Production of high-quality syngas from biomass gasification in a dual fluidised bed gasifier (DFBG) has made a significant progress in R&D and Technology demonstration. An S&M scale bio-automotive fuel plant close to the feedstock resources is preferable as biomass feedstock is widely sparse and has relatively low density, low heating value and high moisture content. This requires simple, reliable and cost-effective production of clean and good syngas. Indirect DFBGs, with steam as the gasification agent, produce a syngas of high content H2 and CO with 12-20 MJ/mn3 heating value. The Mid Sweden University (MIUN) gasifier, built for research on synthetic fuel production, is a dual fluidised bed gasifier. Reforming of tars and CH4 (except for methanation application) in the syngas is a major challenge for commercialization of biomass fluidised-bed gasification technology towards automotive fuel production. A good syngas from DFBGs can be obtained by optimised design and operation of the gasifier, by the use of active catalytic bed material and internal reforming. This thesis presents a series of experimental tests with different operation parameters, reforming of tar and CH4 with catalytic bed material and reforming of tar and CH4 with catalytic internal reformer.   The first test was carried out to evaluate the optimal operation and performance of the MIUN gasifier. The test provides basic information for temperature control in the combustor and the gasifier by the bed material circulation rate.    After proven operation and performance of the MIUN gasifier, an experimental study on in-bed material catalytic reforming of tar/CH4 is performed to evaluate the catalytic effects of the olivine and Fe-impregnated olivine (10%wtFe/olivine Catalyst) bed materials, with reference to non-catalytic silica sand operated in the mode of dual fluidised beds (DFB). A comparative experimental test is then carried out with the same operation condition and bed-materials but when the gasifier was operated in the mode of single bubbling fluidised bed (BFB). The behaviour of catalytic and non-catalytic bed materials differs when they are used in the DFB and the BFB. Fe/olivine and olivine in the BFB mode give lower tar and CH4 content together with higher H2+CO concentration, and higher H2/CO ratio, compared to DFB mode. It is hard to show a clear advantage of Fe/olivine over olivine regarding tar/CH4 catalytic reforming.    In order to significantly reduce the tar/CH4 contents, an internal reformer, referred to as the FreeRef reformer, is developed for in-situ catalytic reforming of tar and CH4 using Ni-catalyst in an environment of good gas-solids contact at high temperature.  A study on the internal reformer filled with and without Ni-catalytic pellets was carried out by evaluation of the syngas composition and tar/CH4 content. It can be concluded that the reformer with Ni-catalytic pellets clearly gives a higher H2 content together with lower CH4 and tar contents in the syngas than the reformer without Ni-catalytic pellets. The gravimetric tar content decreases from 25 g/m3 down to 5 g/m3 and the CH4 content from 11% down below 6% in the syngas.   The MIUN gasifier has a unique design suitable for in-bed tar/CH4 catalytic reforming and continuously internal regeneration of the reactive bed material. The novel design in the MIUN gasifier increases the gasification efficiency, suppresses the tar generation and upgrades the syngas composition. / Gasification-based Biorefinery for Mechanical Pulp Mills
275

Conceptual design of gasification-based biorefineries using the C-H-O ternary diagram

Litheko, Lefu Andrew 10 1900 (has links)
This dissertation develops a systematic targeting method based on the C-H-O ternary diagram for the conceptual design of gasification-based biorefineries. The approach is applied using dimethyl ether (DME) as case study. A stoichiometric equilibrium model is presented for calculation of the C-H-O chemical equilibria to evaluate and predict equilibrium syngas composition, operating temperature, type and amount of oxidant required in biomass gasification. Overall atomic species balances are developed and process targets are plotted on the C-H-O ternary diagram. Sustainability metrics are incorporated to provide useful insights into the efficiency of biorefinery process targets. It was found that syngas at 1200 and 1500 K is predominantly H2 and CO. Moreover, DME biorefineries have two main process targets, based on the indirect and direct synthesis routes. Gasification at 1200 K and 1 atm. using H2O/CO2 = 2.642 (w/w) and H2O/CH4 = 1.645 (w/w) achieved syngas composition targets for the direct and indirect methods respectively. Comparatively, the integrated biorefinery based on indirect route was more efficient, producing 1.903 ton of DME per ton of biomass feedstock. The process is 100% carbon-efficient and recycles 1.025 tons of H2O. / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
276

Catalisadores Cu/Al2O3 promovidos com Co e Zn aplicados à gaseificação de etanol em meio contendo água em condições supercríticas / Cu/Al2O3 catalysts promoted with Co and Zn applied to ethanol gasification in medium containing water under supercritical conditions

Mourão, Lucas Clementino 19 July 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-08-29T13:43:45Z No. of bitstreams: 2 Dissertação - Lucas Clementino Mourão - 2018.pdf: 2137358 bytes, checksum: fb0f843e55d7839ce63dfaae63046a2b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-29T14:13:25Z (GMT) No. of bitstreams: 2 Dissertação - Lucas Clementino Mourão - 2018.pdf: 2137358 bytes, checksum: fb0f843e55d7839ce63dfaae63046a2b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-08-29T14:13:25Z (GMT). No. of bitstreams: 2 Dissertação - Lucas Clementino Mourão - 2018.pdf: 2137358 bytes, checksum: fb0f843e55d7839ce63dfaae63046a2b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-07-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The great environmental concern, coupled with the risk of depletion of non-renewable raw material, has driven the search for new sustainable technologies with major concern to the reduction of pollutant emissions. Hydrogen, a chemical of enormous importance to industrial plants, stands out as a clean and renewable energy source. This chemical is commonly produced from non-renewable sources, such as natural gas reforming. Due to specific reaction conditions, the supercritical water gasification of wet biomass is a promising way for the production of hydrogen and others high added value fuel gases. Ethanol is an attractive material because it is renewable, has low toxicity compared to other resources and has high hydrogen content in its molecule. In order to become this technology viable, a decisive point is the development of a catalyst aiming at cost reductions and high selectivity to the products of interest. In this work, ethanol gasification was carried out in supercritical water with heterogeneous catalysts. The tests were performed on an Inconel Alloy 625 tubular reactor under the following operating conditions: temperatures of 400, 450, 500, 550, 600 and 650 ºC, pressure of 250 bar, 5 g loading of heterogeneous catalyst, reactor feed: ethanol/water molar ratio of 1:10 and mass flow rate of 5 g/min. The catalysts were synthesized by wet impregnation method using aqueous solutions of Cu, Co and Zn nitrates as precursors for the active phase and spherical pellets of Al 2 O 3 as catalytic support. The catalysts and the catalytic support were characterized by Thermogravimetry and Differential Thermal Analysis (TG/DTA), X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), textural analysis by Adsorption/Desorption Isotherms of N 2 at 77 K and X-Ray Diffraction (XRD). The gasification results indicated that H 2 production was mainly due to ethanol dehydrogenation. The catalysts showed higher conversions than observed for catalytic support only. The CuAl catalyst showed higher H 2 selectivity as well as higher H 2 molar flow at 650 °C. The CoZnAl catalyst showed a high tendency for C 2 H 4 formation at any reaction temperature, especially at 650 °C. / A grande preocupação ambiental, junto da possibilidade de insuficiência de matéria prima não renovável, tem estimulado a busca de novas tecnologias sustentáveis com maior atenção à emissão de poluentes. O hidrogênio, substância química de enorme importância nas industriais, destaca-se como uma fonte de energia limpa e renovável. Hidrogênio é comumente produzido a partir de fontes não renováveis, como na reforma à vapor do gás natural. Devido a características reacionais específicas, a gaseificação de biomassas úmidas em meio contendo água em condições supercrítica é um caminho promissor para a produção de hidrogênio e outros gases combustíveis com alto valor agregado. O etanol se mostra um material atraente pois é renovável, apresenta baixa toxicidade em comparação com outros recursos e possui alto teor de hidrogênio em sua molécula. Em busca de viabilizar tal tecnologia um ponto determinante é o desenvolvimento de catalisadores visando reduções de custo e aumento de seletividade aos produtos de interesse. Neste trabalho foram realizados testes de gaseificação de etanol em água supercrítica com catalisadores heterogêneos. Os testes foram executados em reator tubular feito de Inconel 625 sob as seguintes condições operacionais: temperaturas de 400, 450, 500, 550, 600 e 650 ºC, pressão de 250 bar, carga de 5 g de catalisador heterogêneo, alimentação do reator com razão molar de Etanol:Água de 1:10 e vazão mássica de alimentação de 5 g/min. Os catalisadores foram sintetizados a partir do método de impregnação de soluções aquosas dos nitratos precursores de Cu, Co e Zn com excesso de solvente e usando como suporte catalítico pellets esféricos de Al 2 O 3 . Os catalisadores e o suporte catalítico foram caracterizados por Termogravimetria e Análise Térmica Diferencial (TG/ATD), Fluorescência de Raios X (FRX), Microscopia Eletrônica de Varredura (MEV), análise textural por Isotermas de Adsorção/Dessorção de N 2 a 77 K e Difração de Raios X (DRX). Os resultados de gaseificação indicaram que a produção de H2 se deu principalmente a partir da desidrogenação de etanol. Os catalisadores demonstraram conversões maiores ao observado apenas para o suporte catalítico. O catalisador CuAl apresentou maior seletividade a H 2 bem como maior vazão molar de H 2 à temperatura de 650 ºC. O catalisador CoZnAl apresentou elevada tendência a formação de C 2 H 4 em qualquer temperatura de reação, especialmente à temperatura de 650 ºC.
277

Reforma de gás de gaseificação por meio de tocha de plasma : ensaios preliminares / Reformation of gasification gas by plasma torch : preliminary results

Neves, Renato Cruz, 1987- 23 August 2018 (has links)
Orientador: Caio Glauco Sánchez / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-23T14:06:22Z (GMT). No. of bitstreams: 1 Neves_RenatoCruz_M.pdf: 25784234 bytes, checksum: ce1b9833db6f80c61b19cd8781d17a52 (MD5) Previous issue date: 2013 / Resumo: O desafio da tecnologia de reforma de gás de gaseificação é realizar a conversão de alcatrão e particulados em um gás, pois estes contaminantes podem trazer diversos problemas ao sistema de gaseificação como entupimento de filtros e corrosão. Dentre os equipamentos e métodos para a reforma do gás de gaseificação, encontra-se o plasma. Neste trabalho foi projetado, construído e ensaiado um sistema de reforma de gás de gaseificação proveniente de um reator de gaseificação utilizando a tocha de plasma. O sistema de reforma a plasma é constituído pela tocha de plasma inserida na garganta de um tubo convergente-divergente instalado na tubulação de saída do reator de gaseificação. A fonte de alimentação da tocha de plasma é o modelo Powermax1250 e a tocha é o modelo T80M, ambos da marca Hypertherm. A tocha de plasma utiliza nitrogênio como gás de trabalho, opera com pressão de 4; 0 bar no modo arco elétrico com corrente contínua, plasma térmico, não-transferido e alcança temperaturas superiores a 1673 K em distâncias menores que 30 mm. Na gaseificação foi utilizada a serragem de Peroba e Garapeira, fator de ar de 0; 22, velocidade de fluidização de 0,57 m.s-1 e utilizou-se 550 mm de altura do leito fixo de areia quartzosa. A coleta de alcatrão e particulado foi adaptada da norma CEN/BT/TF 143 ("Biomass gasification - Tar and particules in product gases - sampling and analysis"). Nas condições estudadas e analisadas deste trabalho, o valor obtido para a vazão mássica de alcatrão e material particulado foi de (5; 26+0; 58)10-3 g.s-1 para a gaseificação convencional enquanto que para a gaseificação utilizando a tecnologia da reforma de plasma foi de (3; 97+0; 14)10-3 g.s-1, que representou uma redução de 24; 52 % / Abstract: The technologic challenge on reformation of gasification gas is to convert tar and particulate matter into gas, because they can cause various problems on gasification system as corrosion and filters clogging. Among the equipment and methods for gasification gas reformation, it is used the plasma. In this work was designed, built and tested a system for gasification gas reformation from a gasification reactor using a plasma torch. The plasma system is formed by plasma torch inserted in the throat of a convergent-divergent tube installed in the outlet pipe of the gasification reactor. The power supply of the plasma torch is Powermax1250 and the model T80M plasma torch, both from Hypertherm brand. The plasma torch uses nitrogen as working gas, operates at a pressure of 4; 0 bar with arc current mode, thermal plasma, non-transferred and reaches temperatures above 1673 K in distances of less than 30 mm. In the gasification was used Peroba and Garapeira sawdust, air factor 0:22, fluidization velocity 0,57 m.s-1and 550 mm height fixed bed of quartz sand. The tar and particulate collection was adapted from CEN/BT/TF 143 (Biomass gasification - tar and particules in product gases - sampling and analysis). Under the conditions studied and analyzed in this work, the value obtained for the mass flow of tar and particulate material was (5; 26+0; 58)10-3 g.s-1 for conventional gasification while for using the reformation of gasification gas was de (3; 97+0; 14)10-3 g.s-1, which represented a reduction of 24:52 % / Mestrado / Termica e Fluidos / Mestre em Engenharia Mecânica
278

Packed Bed Gasification-Combustion In Biomass Based Domestic Stoves And Combustion Systems

Varunkumar, S 02 1900 (has links) (PDF)
This thesis constitutes fundamental experimental and computational investigations on gasification and combustion in a packed bed of biomass. Packed bed gasification-combustion in counter-current mode is used in two applications -(1) Gasifier stove in reverse downdraft mode (or equivalently, top-lit updraft mode) that constitutes the idea behind efficient and clean burning domestic stoves. (2) Combustion-on moving grate for boiler application, studied widely in Europe. While a large part of the present study is around domestic stoves, a crucial part of the study aims to address the second application as an extension of the approach taken in the first part to clarify conflicting conclusions of earlier studies and explain the aero-thermochemical behavior over the entire range of superficial velocities, V s (this is velocity of air through the empty cross section of the reactor). Operational differences between the two applications lie in the range of superficial velocity -3.5 to 6 cm/s for domestic stoves and 15 to 30 cm/s for grate combustion. Lower values of Vs are chosen for domestic stoves to limit the particulate emissions; higher values of V s for combustion-on-grate to maximize the conversion rate. Present work deals with a fan based gasifier stove, Oorja, built by BP, India (currently transferred to FEPL, Pune) and disseminated to over 400,000 households between 2005 and 2009. The technology was developed at CGPL, IISc and transferred to BP for commercialization. Work reported in this thesis was started to resolve issues of higher CO emissions in char mode operation and occasional smoking during transition from flaming to char mode. The contribution of the thesis is split into two parts. (a) Use of the principles of gasification to improve the performance of the stoves to the highest possible level, balancing between efficiency and ash fusion issues for domestic and industrial applications and (b) fundamental studies to unravel the flame structure in the two-phase gasification-combustion process over the entire range of Vs. Improving the stove performance It has been known that in most free-convection based stoves, like three stone fire and others developed over the last two decades, the amount of energy extracted from the stove by a cooking pot, usually measured as water boiling efficiency, is between 15 to 35 % with CO emissions of more than 1.5 g/MJ. Oorja stove had demonstrated water boiling efficiency of 50 % and CO emissions of 0.75 g/MJ. Operational issues noticed in the field provided an opportunity to further improve the performance by conducting detailed thermo-chemical studies. Towards this, the components of water boiling efficiency in different phases and from different modes of heat transfer were determined. Optimizing the ratio of air flow rate between combustion air from top and gasification air through the grate (denoted by R) was the key to improving the performance. The maximum water boiling efficiency obtained was 62% with 0.53 g/MJ CO for a 320 mm diameter vessel; under these conditions, the first phase, termed flaming mode, involving pyrolysis-gasification-gas phase combustion contributed 45% to the total efficiency and 0.4 g/MJ CO at R = 4.8 and the second phase, termed char mode, involving char surface oxidation-gasification-gas phase combustion contributed 17% and 0.13 g/MJ CO at R = 1.9. Under optimal air flow conditions, efficiency depends on the size of the vessel used; reactive flow calculations were performed with fast chemistry (using mixture fraction approach) in a zone that includes the free space of the combustion chamber and the vessel to obtain the heat transfer efficiency and bring out the effect of vessel size. Experiments aimed at evaluating the performance of the stove on either side of stoichiometry, revealed that while the stove could be operated on the rich side, it was not possible to operate it on the lean side -it was always tending towards the stoichiometric point with enhanced power. Computational studies showed that increased air flow from the top caused enhanced recirculation around the fuel bed bringing more oxygen that reacted closer to the surface and transferred additional heat enhancing the pyrolysis rate, explaining the observed shift towards stoichiometry. An examination of literature showed that the energy balance for stoves had long remained unexplained (unaccounted losses in stoves were up to 40 %). Using the different components of efficiency obtained from experiments and computations, a heat balance was established to within 5%. This vast improvement in the heat balance is due to the fact that the unaccounted loss in the earlier estimates was essentially due to poor combustion, but was not so recognized. The very significant increase in combustion efficiency in this class of stoves allowed the possibility of estimating other components reasonably accurately. This is a direct consequence of the two stage gasification-combustion process yielding steady flow of gases which contain 80% (gasification efficiency) of the input energy enabling near-stoichiometric combustion with the help of controlled supply of combustion air. Fundamental studies Experiments with wood chips (615 kg/m3) and pellets (1260 kg/m3) showed that particle density has no effect on single particle and packed bed combustion in flaming mode beyond the role played through the surface energy balance (involving the product of fuel density and propagation rate, ˙r). Same is true for single char particles. A transport controlled combustion model taking into account the ash build up over the char surface confirmed this behaviour and showed that the phenomenon follows d2 law, where d is the equivalent diameter of the fuel particle, consistent with the experimental results. But packed bed of char particles showed distinct dependence on particle density. Differences were traced to poor thermal environment faced by low density wood char pieces compared to pellet char leading to variations in the volumetric heat release rate. A composite picture of the operational behaviour of the packed bed flame propagation was obtained from the measurements of exit gas composition, bed temperature, temperature of gas phase and condensed phase surface using 100 µm thermocouples, O 2 drop across the flame front using lambda sensor as a function of Vs. The packed bed studies were conducted in insulated steel and glass reactors. These studies clearly showed distinctive regimes in the bed behavior. In the first regime from Vs = 3 to 17 cm/s, (a) the propagation rate increases with Vs, (b) the fractions of CO, H2 are at least 10%, CH4 drops from 3 to 1%, (c) the oxygen fraction is near zero, (d) the gas phase temperature in the bed is constant at about 1600 K, (e) the condensed phase surface temperature increase from 850 K to 1600 K and (f) oxygen fraction drops from 0.21 to 0.0 within a single particle depth and coincides with the gas phase ignition. The inferences drawn from these data are that (i) the process is diffuusion controlled (ii) the bed operates in fuel rich mode, (iii) char participates only in reduction reactions. In the second domain from V s = 17 cm/s up to about 50 cm/s, (a) the propagation rate is nearly constant (b) the mass fractions of CO and H2 drops to less than 5%, CH4 decreases further, (c) oxygen fraction remains near zero, (d) CO 2 increases, (e) gas phase and surface temperatures are nearly equal and increase from 1600 K to 2200 K and match with the equilibrium temperature at that equivalence ratio, (f) oxygen fraction drops from 0.21 to 0 in one particle depth like in the first regime indicating diffuusion limitedness in this regime as well, (g) unlike in the first regime, volatiles from biomass are convected up to the next layer suppressing a local flame and char oxidation dominates. Beyond Vs = 50 cm/s, the propagation ceased to occur. The precise value of the extinction V s depended on the rate of increase of Vs in this range. A faster change initiated the extinction earlier. Observations showed that extinction began at some location around the periphery and spread laterally. Extinction at one layer was adequate to complete the extinction process. To explain the observed behaviour a simple zero-dimensional model tracking the heating of a fresh biomass particle upstream of the propagating flame front because of radiative heat transfer was set up. This equation was coupled with the equation for single particle flaming combustion to explain the behavior in the first regime. In order to explain the observed flattening of propagation rate in the second regime, it was found essential to account for the effect of the ash layer building on the oxidizing char particle and the temperature dependence of ash emissivity, on the radiative heat transfer to fresh biomass. The results of the model coupled with the experimental data from all sources on a corrected propagation rate vs. V s showed a universal behaviour that is considered a very important recognition of the packed bed propagation behaviour. Combining theory and experiments was essential to explain the extinction. The features are: (a) the presence of ash layer over the surface is shown to be responsible for maintaining a steady char conversion in a single particle at low stream speeds, (b) the feature that the ash layer would be blown away at stream velocities of 2.5 to 3 m/s in a single particle combustion, (c) with V s close to 50 cm/s, local velocities of air flow through the bed can reach 2 to 3 m/s, this value being sensitive to the bed arrangement (with slight shifting or settling of one particle leading to increase of the local velocity at the periphery). Thus, the high local speeds of flow through the bed (more than 2 m/s) was considered responsible for removal of ash layer such that radiation losses would be dominant and cause local extinction of the reaction front at the char surface. Thus, this study has led to a comprehensive understanding of the gasification-combustion behavior of packed bed in stoves and on grates. It has also led to the evolution of parameters for obtaining high efficiency and low emissions (HELE) from stoves -both domestic and industrial. Most interestingly, it has resulted in recognition of an universal behavior of flame propagation rate through packed bed of biomass.
279

EVALUATION OF POSSIBLE GASIFIER-ENGINE APPLICATIONS WITH MUNICIPAL SOLID WASTE (A CASE STUDY OF KAMPALA)

BERNARD, KIVUMBI January 2011 (has links)
Gasification of biomass for electricity power generation has been a proven technology in a number of countries in the world. MSW consists of biomass, glass, plastics, metallic scrap and street debris. Biomass constitutes the highest proportion of MSW and being an energy resource, implies that it can contribute tremendously to the energy needs of any country since every country is endowed with this resource which is generated in enormous tonnes per day. The challenge would then be the choice of the technology to harness this abundant energy resource subject to financial and environmental constraints.    In Uganda, MSW gasification for power generation has never been implemented in spite of the 500-600 tonnes of MSW collected per day, the biomass component of the MSW comprising 88%. MSW is instead collected in skips, transported by trucks to a landfill were it is deposited and left to decompose releasing methane (CH4) and carbon dioxide (CO2) gases which are highly potent greenhouse gases. In this regard, the many tonnes per day of MSW collected in Kampala city (area of the study) portray significant potential of generating producer gas using the technology of gasification to run engines for power generation and this study evaluated possible gasifier-engine system applications for power generation. Experiments were carried out  at the Faculty of Technology, Makerere University to determine biomass characteristics (e.g. moisture content, ash content) and gasification parameters(e.g. lower heating value)  of MSW required for gasifier-engine applications. After establishing the lower heating value of the producer gas from MSW, a theoretical design of a gasifier-engine system was investigated for possible applications with the biomass component of MSW and an economic analysis was done to assess the feasibility of the project.
280

EVALUATION OF POSSIBLE GASIFIER-ENGINE APPLICATIONS WITH MUNICIPAL SOLID WASTE (A CASE STUDY OF KAMPALA)

BERNARD, KIVUMBI January 2011 (has links)
Gasification of biomass for electricity power generation has been a proven technology in a number of countries in the world. MSW consists of biomass, glass, plastics, metallic scrap and street debris. Biomass constitutes the highest proportion of MSW and being an energy resource, implies that it can contribute tremendously to the energy needs of any country since every country is endowed with this resource which is generated in enormous tonnes per day. The challenge would then be the choice of the technology to harness this abundant energy resource subject to financial and environmental constraints.    In Uganda, MSW gasification for power generation has never been implemented in spite of the 500-600 tonnes of MSW collected per day, the biomass component of the MSW comprising 88%. MSW is instead collected in skips, transported by trucks to a landfill were it is deposited and left to decompose releasing methane (CH4) and carbon dioxide (CO2) gases which are highly potent greenhouse gases. In this regard, the many tonnes per day of MSW collected in Kampala city (area of the study) portray significant potential of generating producer gas using the technology of gasification to run engines for power generation and this study evaluated possible gasifier-engine system applications for power generation. Experiments were carried out  at the Faculty of Technology, Makerere University to determine biomass characteristics (e.g. moisture content, ash content) and gasification parameters(e.g. lower heating value)  of MSW required for gasifier-engine applications. After establishing the lower heating value of the producer gas from MSW, a theoretical design of a gasifier-engine system was investigated for possible applications with the biomass component of MSW and an economic analysis was done to assess the feasibility of the project.

Page generated in 0.0557 seconds