Spelling suggestions: "subject:"[een] GAUSS MAP"" "subject:"[enn] GAUSS MAP""
11 |
Digital lines, Sturmian words, and continued fractionsUscka-Wehlou, Hanna January 2009 (has links)
In this thesis we present and solve selected problems arising from digital geometry and combinatorics on words. We consider digital straight lines and, equivalently, upper mechanical words with positive irrational slopes a<1 and intercept 0. We formulate a continued fraction (CF) based description of their run-hierarchical structure. Paper I gives a theoretical basis for the CF-description of digital lines. We define for each irrational positive slope less than 1 a sequence of digitization parameters which fully specifies the run-hierarchical construction. In Paper II we use the digitization parameters in order to get a description of runs using only integers. We show that the CF-elements of the slopes contain the complete information about the run-hierarchical structure of the line. The index jump function introduced by the author indicates for each positive integer k the index of the CF-element which determines the shape of the digitization runs on level k. In Paper III we present the results for upper mechanical words and compare our CF-based formula with two well-known methods, one of which was formulated by Johann III Bernoulli and proven by Markov, while the second one is known as the standard sequences method. Due to the special treatment of some CF-elements equal to 1 (essential 1's in Paper IV), our method is currently the only one which reflects the run-hierarchical structure of upper mechanical words by analogy to digital lines. In Paper IV we define two equivalence relations on the set of all digital lines with positive irrational slopes a<1. One of them groups into classes all the lines with the same run length on all digitization levels, the second one groups the lines according to the run construction in terms of long and short runs on all levels. We analyse the equivalence classes with respect to minimal and maximal elements. In Paper V we take another look at the equivalence relation defined by run construction, this time independently of the context, which makes the results more general. In Paper VI we define a run-construction encoding operator, by analogy with the well-known run-length encoding operator. We formulate and present a proof of a fixed-point theorem for Sturmian words. We show that in each equivalence class under the relation based on run length on all digitization levels (as defined in Paper IV), there exists exactly one fixed point of the run-construction encoding operator.
|
12 |
Tópicos de geometria diferencialBatista, Ricardo Alexandre [UNESP] 21 September 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:10Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-09-21Bitstream added on 2014-06-13T19:47:36Z : No. of bitstreams: 1
batista_ra_me_rcla.pdf: 818880 bytes, checksum: 6293c2c753e3d0bd5a6900cfc890944f (MD5) / O principal objetivo deste trabalho é confeccionar um texto para alunos de gradua ção na área de Ciências Exatas e da Terra concernente ao estudo da Curvatura Gaussiana e Aplicação de Gauss, Superfícies Mínimas, Teorema Egregium de Gauss e o Teorema de Gauss- Bonnet para curvas simples fechadas / The main objective from this work is to make a text for students of graduation in the area of exact sciences and of the land concerning to the study of the Gaussian Curvature and the Gauss Map, Minimal Surfaces, Gauss's Theorem Egregium and the Gauss-Bonnet Theorem for Simple Closed Curves
|
13 |
Tópicos de geometria diferencial /Batista, Ricardo Alexandre. January 2011 (has links)
Orientador: João Peres Vieira / Banca: Eliris Cristina Rizziolli / Banca: Laércio Aparecido Lucas / Resumo: O principal objetivo deste trabalho é confeccionar um texto para alunos de gradua ção na área de Ciências Exatas e da Terra concernente ao estudo da Curvatura Gaussiana e Aplicação de Gauss, Superfícies Mínimas, Teorema Egregium de Gauss e o Teorema de Gauss- Bonnet para curvas simples fechadas / Abstract: The main objective from this work is to make a text for students of graduation in the area of exact sciences and of the land concerning to the study of the Gaussian Curvature and the Gauss Map, Minimal Surfaces, Gauss's Theorem Egregium and the Gauss-Bonnet Theorem for Simple Closed Curves / Mestre
|
14 |
Representação Tipo Weierstrass para Superfícies Imersas em Espaços de Heisenberg.Santos Júnior, Valdecir Alves dos 20 July 2011 (has links)
Made available in DSpace on 2015-05-15T11:46:02Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 666060 bytes, checksum: 1ad661f6cc42df5f3ee67db9a939af86 (MD5)
Previous issue date: 2011-07-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we obtain Weierstrass-type representations for immersed surfaces in
Heisenberg space, endowed with a left-invariant metric. We will consider the Riemannian
and Lorentzian case. We will define two complex functions (spinors) satisfying
a linear Dirac-type equation, obtaining thus a representation for immersed surfaces
with prescribed mean curvature. The same will enable us write a representation of
minimal immersion in terms of a harmonic Gauss map. / Neste trabalho obtemos uma representações tipo Weierstrass para superfícies imersas
no espaço de Heisenberg, dotado com uma métrica invariante à esquerda. Consideraremos
os casos Riemanniano e Lorentziano. Definimos duas funções complexas
(spinors), satisfazendo uma equação linear tipo Dirac que usamos para obter uma
representação para superfícies imersas com curvatura média prescrita. A mesma possibilita
escrever uma representação de imersões mínimas em termos de uma aplicação
de Gauss harmônica.
|
15 |
Aspectos topológicos na teoria geométrica de folheações / Topological aspects in the geometric theory of foliationsIcaro Gonçalves 09 December 2016 (has links)
Neste trabalho calculamos a classe de Euler de uma folheação umbílica em um ambiente com forma de curvatura apropriada. Combinamos o teorema de Hopf-Milnor e o número de Euler de uma folheação, definido por Connes, para mostrar como a geometria da folheação influencia na topologia da variedade folheada, bem como na topologia da folheação. Além disso, exibimos uma lista de invariantes topológicos para campos vetoriais unitários em hipersuperfícies fechadas do espaço Euclidiano, e mostramos como estes invariantes podem ser empregados como obstruções a certas folheações com geometria prescrita. / In this work we compute the Euler class of an umbilic foliation on a manifold with suitable curvature form. We combine the Hopf-Milnor theorem and the Euler number of a foliation, defined by Connes, in order to show how the geometry of the foliation influences the topology of the foliated space as well as the topology of the foliation. Besides, we exhibit a list of topological invariants for unit vector fields on closed Euclidean hypersurfaces, and show how these invariants may be employed as obstructions to certain foliations with prescribed geometry.
|
16 |
Geometria de curvas e subvariedades bi-harmônicas / Geometry of biharmonic curves and submanifoldsApoenã Passos Passamani 23 June 2015 (has links)
Neste trabalho estudamos essencialmente problemas relacionados aos conceitos de superfícies e curvas bi-harmônicas e de superfícies de ângulo constante. Caracterizamos as curva bi-harmônicas do grupo especial linear SL(2,R). Em particular, mostramos que todas as curvas bi-harmônicas de SL(2,R) são hélices e damos suas parametrizações explícitas como curvas do espaço pseudo-Euclidiano R42. Estudamos as superfícies biconservativas (as quais representam uma grande família que inclui as superfícies bi-harmônicas) nos espaços de Bianchi-Cartan-Vranceanu, obtendo a caracterização daquelas de ângulo constante e daquelas SO(2)-invariantes. Também, caracterizamos as superfícies de ângulo constante do espaço Euclidiano tridimensional que possuem aplicação de Gauss bi-harmônica, provando que são cilindros de Hopf sobre uma clotóide. Além disto, caracterizamos as superfícies de ângulo contante de SL(2,R). Mais especificamente, damos uma descrição local explícita para estas superfícies em termos de uma determinada curva de SL(2,R) e de uma família a um parâmetro de isometrias do espaço ambiente. / In this work we mainly study some problems related to the concept of biharmonic curves and surfaces and to surfaces of constant angle. We characterize the biharmonic curves in the special linear group SL(2,R). In particular, we show that all proper biharmonic curves in SL(2,R) are helices and we give their explicit parametrizations as curves in the pseudo-Euclidean space R42</sub. We study the biconservative surfaces (which represent a large family including the biharmonic surfaces) in the Bianchi-Cartan-Vranceanu spaces, obtaining the characterization of those with constant angle and of those which are SO(2)-invariant. Furthermore, we characterize the constant angle surfaces of the three-dimensional Euclidean space which have bi-harmonic Gauss map, proving that they are Hopf cylinders over a clothoid. Also, we characterize the constant angle surfaces of SL(2,R). In particular, we give an explicit local description of these surfaces by means of a suitable curve of SL(2,R) and a 1-parameter family of isometries of SL(2,R).
|
17 |
Parametrização de uma hipersuperfície via função suporte no espaço hiperbólico / Parameterization of a hypersurface via support function in the hyperbolic spaceMendez, Milton Javier Cárdenas 26 February 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-03-15T13:27:07Z
No. of bitstreams: 2
Dissertação - Milton Javier Cárdenas Mendez - 2018.pdf: 1063682 bytes, checksum: ab9f203ee1a315ae8756973bcd7c0789 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-16T11:08:51Z (GMT) No. of bitstreams: 2
Dissertação - Milton Javier Cárdenas Mendez - 2018.pdf: 1063682 bytes, checksum: ab9f203ee1a315ae8756973bcd7c0789 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-16T11:08:51Z (GMT). No. of bitstreams: 2
Dissertação - Milton Javier Cárdenas Mendez - 2018.pdf: 1063682 bytes, checksum: ab9f203ee1a315ae8756973bcd7c0789 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-02-26 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / First objective will revise the hyperbolic Gauss map for hypersurfaces Mn C Hn+1 and its
relation with tangent horospheres. We will introduce horospherical ovaloids as compact
hypersurfaces with regular hyperbolic Gauss map and analyze their properties, analyzes
the possible formulations of the Christoffel problem in Hn+1 and that this leads to the
notion of hyperbolic curvature radii. Second objective we will prove that the Nirenberg problem on Sn is equivalent to the Christoffel problem in Hn+1. This equivalence is made explicit by means of a representation formula for hypersurfaces in terms of the hyperbolic Gauss map and the horospherical support function. / Nosso primeiro objetivo é revisar a aplicação hiperbólica de Gauss para hipersuperfícies
Mn C Hn+1 e sua relação com as horoesferas tangentes, vamos apresentar ovaloides
horoesfericos como hipersuperfícies compactas com aplicação regular hiperbólica de
Gauss, além disso, queremos dar uma possível formulação do problema de Christoffel
em H n+1 com a noção de raios de curvatura hiperbólica. Nosso segundo objetivo é mostrar que o problema de Christoffel em Hn+1 é equivalente ao problema de Nirenberg em Sn, isso é equivalente, dar uma parametrizacão de uma hipersuperfície em termos da aplicão hiperbólica de Gauss e da função suporte horoesferica.
|
18 |
Teoremas de Rigidez no espaço hiperbólico. / Theorems of Stiffness in hyperbolic space.ROCHA, Jamilly Lourêdo. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T17:38:25Z
No. of bitstreams: 1
JAMILLY LOURÊDO ROCHA - DISSERTAÇÃO PPGMAT 2014..pdf: 5707925 bytes, checksum: 8010cd451ac64c8a7fccc36a2f8313f6 (MD5) / Made available in DSpace on 2018-08-09T17:38:25Z (GMT). No. of bitstreams: 1
JAMILLY LOURÊDO ROCHA - DISSERTAÇÃO PPGMAT 2014..pdf: 5707925 bytes, checksum: 8010cd451ac64c8a7fccc36a2f8313f6 (MD5)
Previous issue date: 2014-08 / Capes / Com uma aplicação adequada do conhecido princípio do máximo generalizado de
Omori-Yau, obtemos resultados de rigidez com relação a hipersuperfícies imersas completascomcurvaturamédiadelimitadanoespaçohiperbólicoHn+1 (n+1)-dimensional. Em nossa abordagem exploramos a existência de uma dualidade natural entreHn+1 e a metade Hn+1 do espaço de SitterSn+11 , cujo modelo é chamado de steady state space. / As a suitable application of the well known generalized maximum principle of
Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed
with bounded mean curvature in the (n+1)-dimensional hyperbolic spaceHn+1. In
our approach, we explore the existence of a natural duality betweenHn+1 and the half
Hn+1 of the de Sitter spaceSn+11 , which models the so-called steady state space.
|
19 |
Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifoldsRamos, Álvaro Krüger January 2015 (has links)
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. / We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
|
20 |
Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifoldsRamos, Álvaro Krüger January 2015 (has links)
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. / We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
|
Page generated in 0.0568 seconds