• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 181
  • 42
  • 30
  • 12
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • Tagged with
  • 734
  • 171
  • 169
  • 160
  • 145
  • 112
  • 95
  • 80
  • 56
  • 56
  • 54
  • 53
  • 49
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Syntéza core/shell kvantových teček pro diagnostiku / Synthesis of core/shell quantum dots for diagnostics

Mihajlović, Ana January 2014 (has links)
This thesis deals with biosensors based on modified semiconductor core/shell quantum dots (QDs) for diagnosis. The work is divided into four main parts. The first one discusses the theory required for the use of QDs in bioaplications, there are described methods of synthesis, modification, application and bioconjugation of QDs. In the experimental part, CdTe/ZnS QDs with core/shell structure were prepared, in which the core was modified by MPA, GSH and TGA. In the next step, these QDs were further modified using CDI, EDC and NHS as mediators in order to increase affinity to BSA (bovine serum albumine) and IgG (imunoglobuline G). Prepared conjugates were characterized by fluorescence spectroscopy (Infinite M200Pro, Tecan) and capillary electrophoresis (Agilent 7100).
652

Syntéza kvantových teček pro detekci proteinů / Synthesis of quantum dots for proteins detection

Šibíková, Anna January 2015 (has links)
This thesis is focused on synthesis of quantum dots (QDs) for protein detection. It comprises three parts. The first part summaries the theory of QDs, their synthesis, functionalization, interactions and applications in medicine. In the second part synthesis of CdTe/ZnS core/shell QDs modified by glutathione (GSH) is described, followed by the conjugation with biomolecules BSA and IgG. Several coupling agents such as EDC with NHS and CDI were used. In the last part, the final products were characterized by fluorescence spectroscopy and capillary electrophoresis. The results show the dependence of the fluorescence intensity of the QDs on pH range, concentration of BSA and IgG concentrations using different crosslinkers.
653

Etude biochimique de mitoNEET humaine, protéine à centre [2Fe-2S], impliquée dans une voie de réparation des protéines Fe-S suite à un stress oxydatif / Biochemical studies of human mitoNEET, a [2Fe-2S] protein involved in a pathway dedicated to Fe-S protein repair after oxidative stress

Mons, Cécile 20 November 2017 (has links)
Présente chez les mammifères, mitoNEET (mNT) est une protéine à centre Fe-S ancrée à la membrane externe de la mitochondrie. Cette protéine dimérique possède un centre [2Fe-2S] par monomère lié de façon atypique à la protéine par trois cystéines et une histidine. Notre équipe a auparavant montré l’implication de mNT dans une nouvelle voie de réparation du centre [4Fe-4S] de l’Iron Regulatory Protein-1 (IRP-1), régulateur majeur de l’homéostasie du fer intracellulaire, par transfert du centre Fe-S de mNT à l’IRP-1 à réparer. Au cours de ma thèse, je me suis focalisée sur la caractérisation in vitro de la réaction de transfert de centre Fe-S de mNT vers une protéine réceptrice modèle, l’apo-ferrédoxine d’E. coli. En combinant des approches de biochimie et biophysique (réalisées en collaboration) à l’aide de protéines purifiées, cette étude a permis de démontrer que mNT agit comme un interrupteur moléculaire : lorsque son centre Fe-S est réduit, la protéine est extrêmement stable et le centre ne peut être ni perdu ni transféré; une fois oxydé, il peut alors être transféré à une protéine réceptrice. La présence d’oxygène n’affecte pas cette réaction même s’il s’agit d’un déterminant majeur de la stabilité de la protéine. De plus, la vitesse de transfert du centre est très sensible au pH, ce qui fait de mNT un senseur de pH. Ces études ont aussi montré que mNT est extrêmement résistante à H2O2 en comparaison à d’autres protéines de transfert de centre Fe-S. J’ai également étudié l’interaction d’une molécule anti-oxydante, le resvératrol-3 sulfate, avec mNT. Pour finir, je me suis intéressée à l’effet du glutathion sur mNT. Acteur majeur de la régulation de l’homéostasie rédox, le glutathion existe sous deux formes: oxydée (GSSG) et réduite (GSH). J’ai alors constaté que le GSH déstabilise fortement mNT à certains pH et peut même se lier à cette protéine. La fonction thiol du GSH et la formation de radicaux sur cette dernière sont clairement impliquées dans la déstabilisation de mNT. / Present in mammals, mitoNEET (mNT) is an Fe-S protein anchored to the outer mitochondrial membrane. This dimeric protein contains a [2Fe-2S] per monomer with an atypical ligation involving three cysteines and one histidine. Previously, our team proposed that mNT is involved in a new pathway dedicated to the reparation of the oxidatively damaged [4Fe-4S] cluster of human iron-regulatory protein-1 (IRP-1)/cytosolic aconitase, a key player of the regulation of cellular iron homeostasis. This reparation occurs via Fe-S cluster transfer from mNT to IRP-1 to repair. In the course of my thesis, I focused on the characterization of cluster transfer reaction from mNT to a model receptor protein, the E. coli apo-ferredoxin. Using purified proteins and combining biochemical approaches with biophysical ones performed in colaboration, this study showed that mNT acts as a redox switch: when the Fe-S cluster is reduced, the protein is extremely stable and it cannot be lost or transferred; when it is oxidized, it can be transferred to a receptor protein. Dioxygen does not affect this transfer reaction whereas this is a major determinant of protein stability. The transfer speed is highly sensitive to pH. Thus, mNT seems to act also as a pH sensor. Moreover, this study shows that mNT is extremely resistant to H2O2 compared to other Fe-S cluster transfer proteins. I also looked at the interaction of an antioxidant molecule, the resveratrol-3-sulfate, with mNT. Finally, I studied the effects of glutathione on mNT. Major player of the regulation of redox homeostasis, glutathione exists under two states: a reduced state (GSH) and an oxidized one (GSSG). I observed that GSH strongly destabilizes mNT at specific pHs and can even directly interact with the protein. The thiol function of GSH and the radical formation on this function are clearly involved in the mNT Fe-S destabilization.
654

Effekte einer Selen- und Vitamin E-Supplementierung auf den peripartalen antioxidativen Stoffwechsel und die Morbidität bei Milchkühen

Fischer, Sandra 13 January 2015 (has links)
Zielstellung dieser Studie war es zu überprüfen, ob durch Fütterung einer mit Vitamin E und Selen angereicherten Mineralstoffmischung in der Transitphase eine Beeinflussung des antioxidativen Status mit Reaktionen GPX [Glutathionperoxidase], SOD [Superoxiddismutase], TEAC [Trolox equivalent antioxidative capacity] und ACW [nichtenzymatische wasserlösliche Antioxidantien] sowie des Stoffwechsels erreicht werden kann und ob damit die Häufigkeit der in der Frühlaktation typischen Erkrankungen sinkt. Zur Beantwortung dieser Fragestellung wurden in einem Milchviehbestand mit 1400 Kühen und Färsen zwei Gruppen von je 26 Tieren zu Beginn der Transitfütterung zusammengestellt. Die Versuchsgruppe erhielt drei Wochen ante partum bis drei Wochen post partum eine Mineralstoffmischung mit einem Vitamin E- Gehalt von 300 mg/kg TM (= 447 IU /kg TM) und einem Selengehalt von 0,5 mg/ kg TM, die Kontrollgruppe die stallübliche Mineralstoffmischung mit 0,3 mg Selen/kg TM ohne zusätzliche Vitamin E Ergänzung. Jedem Tier wurde drei Wochen ante partum, 2 bis 4 Tage post partum und 3 Wochen post partum zur klinisch- chemischen Kontrolle Blut entnommen.Zur Bestimmung des antioxidativen Status wurden die GPX, SOD, TEAC und ACW untersucht. Zur Bewertung des peripartalen Stoffwechsels wurden die Parameter des Energie-, Fett- und Leberstoffwechsels (BHB [ß-0H-Butyrat], Cholesterol, AST [Aspartat-Amino-Transferase], GLDH [Glutamat- Dehydrogenase]), des Eiweißstoffwechsels (Albumin, TP [Gesamt-Eiweiß]), sowie des Mineralstoffwechsels (Ca [Calcium], Pi [anorganisches Phosphat] und der CK [Creatinkinase] bestimmt und mit den Kühen der Kontrollgruppe verglichen. Im Blutbild wurden die Erythrozytenzahl, die Leukozytenzahl, die Erythrozytenindices (MCH, MCHC, MCV), Hämatokrit, Hämoglobin und Thrombozytenzahlen verglichen. Die Häufigkeit des Auftretens der klinischen Krankheitsbilder Mastitis, Gebärparese, Retentio secundinarum, Klauenerkrankungen und puerperale Septikämie und die Produktionsdaten Milchleistung nach 100 Tagen, Milchleistung nach 305 Tagen und Zwischenkalbezeit wurden nach Ende der Untersuchungen statistisch ausgewertet. Eine direkte Beeinflussung des SOD und der GPX ist möglich. Durch die Gabe der mit Vitamin E und Selen angereicherten Mineralstoffmischung konnte in der Versuchsgruppe ein Anstieg der GPX-Aktivität und eine Plateaubildung erreicht werden. Die SOD-Aktivitäten lagen in der Versuchsgruppe drei Wochen post partum signifikant höher als in der Kontrollgruppe. Eine bessere Adaptation an den oxidativen Stress im peripartalen Zeitraum kann durch eine mit Vitamin E und Selen angereicherte Mineralstoffmischung erreicht werden. Die Inzidenz der Mastitiserkrankungen in der Frühlaktation wurde signifikant gesenkt.Die Inzidenz der Mastitiserkrankungen in der Frühlaktation wurde signifikant gesenkt. Signifikante Unterschiede ergaben sich auch in der Aktivität der GLDH. In der Versuchsgruppe wurden 3 Wochen post partum deutlich niedrigere GLDH- Aktivität gemessen als in der Kontrollgruppe, woraus auf einen besseren Leberzellschutz in der kritischen biologischen Phase der Milchkuh zu schließen ist. Hinsichtlich der Häufigkeit des Auftretens weiterer klinischer Erkrankungen im peripartalen Zeitraum konnte jedoch keine Verbesserung erzielt werden. Ebenso haben sich die Produktionsparameter Milchleistung und Zwischenkalbezeit nicht verbessert.
655

In Vitro Evaluation of Novel N-Acetylalaninate Prodrugs That Selectively Induce Apoptosis in Prostate Cancer Cells

McGoldrick, Christopher A., Jiang, Yu Lin, Brannon, Marianne, Krishnan, Koyamangalath, Stone, William L. 18 September 2014 (has links)
Cancer cell esterases are often overexpressed and can have chiral specificities different from that of the corresponding normal cells and can, therefore, be useful targets for activating chemotherapeutic prodrug esters. Prodrug esters are inactive compounds that can be preferentially activated by esterase enzymes. Moreover, cancer cells often exhibit a high level of intrinsic oxidative stress due to an increased formation of reactive oxygen species (ROS) and a decreased expression of some enzymatic antioxidants. Prodrugs designed to induce additional oxidative stress can selectively induce apoptosis in cancer cells already exhibiting a high level of intrinsic oxidative stress. This study focused on the in vitro evaluation of four novel prodrug esters: the R- and S- chiral esters of 4-[(nitrooxy)methyl]phenyl N-acetylalaninate (R- and S-NPAA) and the R- and S- chiral esters of 4-[(nitrooxy)methyl]naphth-1-yl N-acetylalaninate (R- and S-NQM), which are activated, to varying extents, by oxidized protein hydrolase (OPH, EC 3.4.19.1) yielding a quinone methide (QM) intermediate capable of depleting glutathione (GSH), a key intracellular antioxidant. OPH is a serine esterase/protease that is overexpressed in some human tumors and cancer cell lines.Methods: To evaluate the chiral ester prodrugs, we monitored cellular GSH depletion, cellular protein carbonyl levels (an oxidative stress biomarker) and cell viability in tumorigenic and nontumorigenic prostate cancer cell lines.Results: We found that the prodrugs were activated by OPH and subsequently depleted GSH. The S-chiral ester of NPAA (S-NPAA) was two-fold more effective than the R-chiral ester (R-NPAA) in depleting GSH, increasing oxidative stress, inducing apoptosis, and decreasing cell viability in tumorigenic prostate LNCaP cells but had little effect on non-tumorigenic RWPE-1 cells. In addition, we found that that S-NPAA induced apoptosis and decreased cell viability in tumorigenic DU145 and PC3 prostate cell lines. Similar results were found in a COS-7 model that overexpressed active human OPH (COS-7-OPH).Conclusions: Our results suggest that prostate tumors overexpressing OPH and/or exhibiting a high level of intrinsic oxidative stress may be susceptible to QM generating prodrug esters that are targeted to OPH with little effect on non-tumorigenic prostate cells.
656

Redoks regulacija ćelijskog ciklusa azot oksidom / Redox regulation of cell cycle through nitric-oxide

Bogdanović Višnja 26 October 2007 (has links)
<p>Balans redoks potencijala u živoj ćeliji predstavlja imperativ održavanja zdravog fenotipa, i u&nbsp;krajnjem, njenog preživljavanja. Nitrozativni stres može ozbiljno naru&scaron;iti ćelijsku redoks&nbsp;homeostazu i, u kombinaciji sa oksidativnim stresom, uticati na ćelijsku proliferaciju i&nbsp;diferencijaciju, a u nekim slučajevima i na aktivaciju maligne transformacije&nbsp;U ovom radu ispitivani su efekti donora NO natrijum-nitroprusida na dve ćelijske linije u&nbsp;kulturi: transformisane&nbsp; ćelije mi&scaron;ijih fibroblasta (L929) i maligne&nbsp; ćelije humane&nbsp;eritroleukemije (K562). Natrijum- nitroprusid (SNP) je fotoreativan molekul sa veoma&nbsp;kratkim poluživotom koji izaziva koncentraciono - zavisnu proliferaciju ili inhibiciju<br />ćelijskog rasta in vitro.NO izaziva različite efekte u zavisnosti od eksperimentalnog modela,&nbsp;svoje relativne koncentracije kao i okruženja u kojem nastaje. Ispitivanja mogućnosti direktne&nbsp;transformacije azot oksida u redoks aktivne vrste kao &scaron;to su nitrozonijum katjon (NO<sup>+</sup>) i&nbsp;nitroksil anjon (NO<sup>-</sup>/HNO) i direktni efekti tih redoks potomaka u ćeliji tek su u začetku. U&nbsp;na&scaron;im eksperimentima, kori&scaron;ćenjem donora NO - natrijum nitroprusida (SNP) i dve vrste&nbsp;superoksid dismutaza, CuZn-SOD i Mn-SOD, stvorili smo uslove generisanja vi&scaron;e vrsta&nbsp;signalnih molekula i ispitali odgovor transfomisanih (L929) i malignih (K562) ćelija na njih.&nbsp;Rezultati eksperimenata pokazuju da izabrani parametri (količina slobodnih tiolnih grupa i&nbsp;glutationa) mogu biti relevantni za praćenje efekata egzogenog azot oksida i njegovih redoks&nbsp;potomaka kod različitih, transformisanih i malignih ćelijskih linija.</p> / <p>The redox potential balance in the living cell isthe imperative of continuation of healthy phenotype, and subsequently of its survival. Nitrosative stress may seriously damage cell&#39;s redox homeostasis, and in combination with oxidative stress may influence cell proliferation and differentiation, in some cases even activation of malignant transformation. This paper investigates effects of sodium nitroprusside as&nbsp; NO donor on two cell lines in culture: transformed cells of mice fibroblasts (L929) and malignant cells of human eritroleukemia (K562). The sodium nitroprusside(SNP)&nbsp; is a photo reactive molecule with very short half-life, causing concentration- dependant proliferation or inhibition of cell growth in vitro.The NO causes different effects depending on experimental model, its relative concentration and environment&nbsp; where it is formed. Investigations of possibility of direct transformation from nitrogen oxide to redox-active species as nitrosonium cation (NO+) and nitroxyl anion (NO &minus;/HNO), as well as direct effects ofthose redox descendants within the cell are only in beginning. In our experiments,by using sodium nitroprusside (SNP) as NO donor and&nbsp; two kind of superoxide dismutase, CuZn-SOD and Mn-SOD, we created conditions to generate several kinds of signal molecules and investigated reaction of transformed (L929) and malignant (K562) cells tothose. Results of experiments are showing the parameters chosen (amount of free thiol groups and glutathione) may be relevant in measuring the effect of exogenous nitrate oxideand its redox descendants in different,&nbsp; both transformed and malignant cell lines.</p>
657

Investigation of the potential bacterial proteasome homologue Anbu

Suknaic, Stephen R. 08 September 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Anbu is a bacterial protein with significant homology to the sub-units of the 20S proteasome and is predicted to be a novel bacterial proteasome. The goal of this project was to determine if the recombinant Anbu protein from Pseudomonas aeruginosa is a proteasome. Anbu from P. aeruginosa was successfully cloned, expressed and purified. In order to determine the catalytic activity of Anbu, the purified protein was tested with a variety of substrates and conditions. The targets analyzed included fluorescently-labeled substrates, denatured proteins, diubiquitin, and a peptide library in the hopes of obtaining a useful model substrate. Experiments were also conducted to determine what role Anbu has in the cell. Western analysis was performed on the cell lysate of wild type P. aeruginosa and insertional mutants to detect Anbu expression. The level of biofilm formation was compared between the wild type and mutants. Cultures were grown under stress conditions including the oxidative stress of diamide and the nitrosative stress of S-nitrosoglutathione. Growth rates were monitored in an attempt to detect a phenotypic difference between the wild type and the mutants lacking Anbu, HslV, and the other proteins of interest. While a substrate for Anbu has yet to be found, this protein was found to assemble into a larger structure and P. aeruginosa lacking Anbu was sensitive to the oxidative stress of diamide and the nitrosative stress of S-nitrosoglutathione.
658

NMR Spectroscopic Investigation of Lanthanide, Actinide, and Selenium Containing Complexes Related to the Environment or Nuclear Waste Disposals

Kretzschmar, Jerome 27 May 2019 (has links)
The ultimate goal of this work is providing insights into fundamental (physico-) chemical (redox) behavior of hexavalent uranium (U(VI)), trivalent europium (Eu(III)) and selenium (Se), and upon their interaction with ubiquitous small biomolecules (in case of U(VI) and Eu(III)) or alkaline earth metal ions (in case of Se(IV) and Se(VI)) by application of Nuclear Magnetic Resonance (NMR) spectroscopy. NMR spectroscopy is a powerful method proving its usefulness also to environmental and nuclear waste related studies in aqueous solutions by determination of (potential) binding sites, molecular structures (even conformation and configuration) as well as intra- and intermolecular dynamics, (redox) reaction pathways and mechanisms. The present work comprises extensive NMR spectroscopic investigations in aqueous (D2O) solutions on (i) glutathione (GSH) and glutathione disulfide (GSSG) interactions with trivalent lanthanides (Ln(III), particularly Eu(III)) and U(VI), (ii) molecular structures of citrate (Cit) complexes of U(VI), and their reactions upon light-irradiation, as well as (iii) pH- and temperature-dependent speciation of selenium oxyanions, i.e., Se(VI) (selenate) and Se(IV) (selenite and, notably, hydrogen selenite) as well as Se(VI) and Se(IV) interaction with alkaline earth metal ions. These investigations are supported by time-resolved laser-induced fluorescence spectroscopy (TRLFS), ultraviolet-visible-near infrared (UV-Vis-NIR), IR/Raman, and extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy (TEM), as well as quantum chemical calculations on density functional theory (DFT) level. For NMR spectroscopic data on GSH/GSSG complexation towards both Eu(III) and U(VI) are lacking, the herein presented results are new, and nicely complement other spectroscopic studies. Ln(III) complexes of GSH are characterized by their high solubility at least up to 300 mM and pD 5. However, the formation constant of the Eu(III)–GSH 1:1 complex is quite low with log K = 1.71 ± 0.01 as determined by Eu(III)-TRLFS. The diamagnetic La(III) and Lu(III) showed only little effect on the NMR spectra (< 2 ppm) while analogous Eu(III) solutions revealed hyperfine shifts up to 40 ppm. Eu(III)-induced 1H chemical shift changes are solely upfield and attributed to be predominantly due to pseudocontact contribution caused by dipolar interaction. In contrast, Eu(III)-induced 13C chemical shift changes of adjacent atoms – at least for the carboxyl and α-carbons – show alternating signs, indicating spin polarization effects owing to contact contribution. As expected for hard LEWIS acids and shown by other spectroscopies, complexation facilitates by the carboxyl groups. Qualitative differences between the glutamyl and glycyl carboxylate in metal ion complexation are ascribed to COULOMB repulsion due to the positively charged NH3+ in direct vicinity. Investigations of the U(VI)–GSH system covered experiments under both oxidizing and reducing conditions, performed with GSH’s oxidized form, GSSG, at ambient conditions, while samples with reduced GSH were handled under N2 atmosphere. For either condition, U(VI) showed interaction in aqueous (D2O) solution with both GSH and GSSG as determined by U(VI)-induced 1H and 13C chemical shift changes and U(VI) TRLFS, the latter comprising measurements at 25 °C and –120 °C. In principle, the interactions are stronger as compared to the Ln(III) system, and the speciation in both solution and solid is more complex owing to the aqueous chemistry of uranium. Observed binary GSH complexes are [UO2(H2GSH)]2+ for pD values up to ≈ 2.3, and [UO2(HGSH)]+ predominating for pD > 2.3. Complementary to the Eu(III) results, whenever net neutral binary GSH/GSSG or ternary hydroxo GSH/GSSG U(VI) complexes form in solution, both these U(VI) systems revealed extensive precipitation because of the low solubility of these complexes. Binary U(VI) GSSG and ternary U(VI) hydroxo GSSG complexes yield solid phases from pD 2 through 8, even in carbonatic media. The largest quantities of aqueous GSSG–U(VI) complexes are observed for pD ≈ 3.5, with the association constant for pH 3 determined by TRLFS as log K = 4.81 ± 0.08 for a 1:1 complex. GSH cannot compete with hydroxo ligands for complexation as of pD 6, whereas GSSG can at least partially compete with hydroxo and carbonate ligands upon formation of both quaternary U(VI) hydroxo carbonate GSSG, and ternary U(VI) carbonate GSSG (poly-)anionic species of high solubility. Under reducing and near-neutral conditions (pD 6 – 9) GSH immediately reduced U(VI) with subsequent formation of nanocrystalline UO2+x. After centrifugation of the starting material and allowing the decanted supernatant to age, the dissolved nanocrystals assemble network-like as disclosed by TEM, and further analysed by selected-area electron diffraction (SAED), energy-dispersive X-ray (EDX) and UV-Vis spectroscopy, revealing hyper-stoichiometric UO2+x phases. Such network-like assembled actinide containing nanocrystals, with the arrangement most likely provoked by the presence of GSSG, have never been shown before. Complementary, the precipitate that has also been allowed to age as a wet paste, showed color changes from yellow via olive to black, indicating a reaction to proceed. The repeatedly probed and dissolved material exhibited GSSG in NMR spectra, and UV-Vis-NIR absorption bands attributed to U(IV) and, notably, U(V), the latter implying a one-electron transfer with subsequent disproportionation of U(V) to U(IV) and U(VI). Therefore, obtained results advance the understanding of both fundamental redox behavior of uranium and the role of GSH (and related molecules) in U(VI) detoxification processes in vivo. Although investigated for over 70 years, there are still controversial discussions on both speciation and structures of U(VI)–Cit complexes. By means of NMR’s strength in both structure determination and sensitivity to dynamic processes, studies regarding the U(VI)–Cit system allowed further fundamental insights into the structures of the formed complexes on a molecular level. Upon complexation a chiral center is induced in Cit’s central carbon, resulting in the formation of two diastereomeric pairs of enantiomers, whereupon the dimeric complexes exhibit syn and anti configured isomers. In fact, the combination of 17O NMR (note: at natural abundance) and quantum chemical calculations allowed an unambiguous decision on complex geometry and overall configurations. It is evidenced for the first time that the syn isomer is favored in aqueous solution in contrast to the preferably crystallizing anti isomer. Both isomers coexist and interconvert among one another, with a rate estimated to be in the order of 102 s–1 at 25 °C in acidic media, and a corresponding activation energy of approximately 60 kJ mol–1. Moreover, clear indications for uranium chirality is observed for U4+, with the 1:1 U(IV)–Cit complexes also forming two diastereomeric pairs of enantiomers. Comprehensive spectroscopic experiments combined with quantum chemical calculations improved basic understanding of the photo-reaction mechanism in the U(VI)–Cit system. Regardless of sample conditions, Cit is degraded to β-ketoglutarate, acetoacetate, and acetone, while U(VI) was reduced to U(IV) at pD 2 and U(V) at pD 5, suggesting a two- and a one-electron transfer, respectively. NMR signals observed for pD 5 samples at remarkable 1H chemical shift values between 25 and 53 ppm, in combination with UV-Vis-NIR absorptions at about 750 and 930 nm, are assigned to U(V) complexes of citrate. With regard to reported pH dependence on reaction rate and yield in the literature combined with observations in this work, H+/D+ are considered mechanistically crucial constituents. Furthermore, the photoreaction proceeds intermolecularly, requiring for free Cit to be present in solution. In consideration of both the U(VI)–Cit photoreaction and the U(VI)–GSH chemical redox reaction, regardless of the particular mechanism, in both cases the process is intermolecular. This is not only a highly interesting, but the more a very important result, rendering the reductants not required to be bound to U(VI) in order to reduce it. Owing to the suitability of 77Se as NMR-active but non-radioactive Se isotope, this spectroscopy was also applied to study chemical behavior of the nuclear waste related long-lived 79Se. For the first time spectroscopic evidence is given for hydrogen selenite dimerization in aqueous solution upon formation of homo-dimers by hydrogen bonding that are stable up to 60 °C and so are other selenium oxyanionic species. Additionally, a remarkably higher 77Se chemical shift temperature coefficient of the dimer – as compared to corresponding selenite and selenous acid – was found. These findings are attributed to a significant deshielding upon heating due to remarkably different rovibrational modes upon stretching the dimer as a whole instead of its dissociation into monomers owing to the rather strong hydrogen bonds. Interaction of selenium oxyanions with ubiquitous alkaline earth metals, i.e., Ca2+ and Mg2+, showed formation of weak aqueous complexes of both selenite and hydrogen selenite dimer for excessive selenium, however, at high ionic strength (5.6 M) for equimolar Ca2+ and Se(IV) even at pHc 5 crystalline calcium selenite is formed.
659

Studies into sulfur amino acid and bile salt metabolism in pancreatic and liver diseases. Profiles of sulfur amino acids and glutathione in acute pancreatitis; method development for total and oxidized glutathione by liquid chromatography; bile salt profiles in liver disease by liquid chromatography-mass spectrometry.

Srinivasan, Asha R. January 2010 (has links)
Sulfur amino acids have critical function as intracellular redox buffers and maintain homeostasis in the external milieu by combating oxidative stress. Synthesis of glutathione (GSH) is regulated at a substrate level by cysteine, which is synthesized by homocysteine via the transsulfuration pathway. Oxidative stress and diminished glutathione pools play a sustained role in the pathogenesis of acute pancreatitis. One of the aims of this study was to experimentally address the temporal relationship between plasma sulfur amino acid levels in patients suffering from acute pancreatitis. The data indicated low concentration of cysteine initially, at levels similar to those of healthy controls. Glutathione was found reduced whilst cysteinyl-glycine and ¿- glutamyl transpeptidase activity were increased in both mild and severe attacks. As the disease progressed, glutathione and cysteinyl-glycine were further increased in mild attacks and cysteine levels correlated with homocysteine and ¿-glutamyl transpeptidase activity. The progress of severe attacks was associated with glutathione depletion, reduced ¿-glutamyl transpeptidase activity and increased cysteinyl-glycine, that correlated with glutathione depletion. The corollary that ample supply of cysteine and cysteinly-glycine does not contribute towards glutathione synthesis in acute pancreatitis poses an important issue that merits resolution. Heightened oxidative stress and depletion of glutathione rationalized the progression of disease in severe attacks. An upsurge that reactive oxygen species can shift redox state of cells is determined by the ratio of the abundant redox couples reduced and oxidized glutathione (GSH: GSSG) in cell. The study reported a novel methodology for quantification of total oxidized glutathione (tGSSG) and total glutathione (tGSH) in whole blood using reverse phase high performance liquid chromatography. The novelty of the method is ascertained by the use of a mercaptan scavenger 1, methyl-2-vinyl-pyridinium trifluromethanesulfonate for the total oxidized glutathione determination. The results reported permit quantitation of tGSSG and tGSH and was applied to a control group. Finally, the study was also focussed in developing a liquid chromatography-mass spectrometric method to evaluate free and conjugated bile acids in patients suffering from various degrees of cholestatic-hepatobiliary disorders. The study reported low levels of ursodeoxycholic acid (UDCA) and slightly high levels of lithocholic acid (LCA). All the primary bile acids seem to be conjugated with glycine and taurine amino acid.
660

Pharmacological characterisation of selected pyrrolobenzodiazepines as anti-cancer agents. Pharmacokinetic and pharmacodynamic characterisation of the pyrrolobenzodiazepine dimer SJG-136 and the monomers D709119, MMY-SJG and SJG-303

Wilkinson, Gary P. January 2004 (has links)
This study aimed to investigate the pharmacology of selected pyrrolobenzodiazepine (PBD) compounds shown to have cytotoxic activity with predicted DNA sequence selectivity. Research focused upon the PBD dimer, SJG-136, selected for clinical trials, and the novel PBD monomer compounds D709119, MMY-SJG and SJG-303. SJG-136, a novel sequence-selective DNA minor groove cross-linking agent, was shown to have potent tumour cell type selective cytotoxicity in in vitro assays. Pharmacokinetic studies in mice via both the i.p. and i.v. route (dosed at the maximum tolerated dose (MTD)) showed that SJG-136 reaches concentrations in plasma well in excess of the in vitro IC50 values for 1 h exposure, and was detected in tumour and brain samples also above the in vitro IC50 values. Furthermore, SJG-136 showed linear pharmacokinetics over a 3-fold drug dose range. Metabolism studies showed SJG-136 is readily metabolised in vitro by hepatic microsomes, predominantly to a monodemethylated metabolite; this metabolite could be detected in vivo. Analytical method development work was also conducted for the imminent Phase I clinical trial of SJG-136 resulting in a sensitive and selective bio-analytical detection protocol. Comet analysis showed that SJG-136 dosed at the MTD and ⅓MTD causes significant interstrand DNA cross-linking in lymphocytes in vivo. In vitro studies demonstrated that SJG-136 localises within the cell nucleus, and acts to disrupt cell division via a G2/M block in the cell cycle at realistic concentrations and exposure times that are achievable in vivo. In vivo pharmacokinetic studies of D709119 showed the compound is easily detectable in mouse plasma following i.p. dosing at the MTD, but could not be detected in either tumour or brain samples. In vitro cytotoxicity studies revealed D709119 to have potent activity across a selection of tumour cell lines. SJG-136, D709119, MMY-SJG, SJG-303 and DC-81 demonstrated a non-enzyme-catalysed reactivity with the biologically relevant thiol, reduced glutathione (GSH). Studies demonstrated that reactivity of the PBD compounds toward GSH was dependent on GSH concentrations. At levels of GSH found in plasma, the PBD compounds showed considerably lower reactivity with GSH than at intracellular GSH levels. SJG-136 and D709119 also showed favourable pharmacokinetic profiles in mice, and warrant further study for anti-tumour activity in vivo and progression to use in patients.

Page generated in 0.0282 seconds