• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The formal verification of hard real-time systems

Cardell-Oliver, Rachel Mary January 1992 (has links)
No description available.
2

Learning Comprehensible Theories from Structured Data

Ng, Kee Siong, kee.siong@rsise.anu.edu.au January 2005 (has links)
This thesis is concerned with the problem of learning comprehensible theories from structured data and covers primarily classification and regression learning. The basic knowledge representation language is set around a polymorphically-typed, higher-order logic. The general setup is closely related to the learning from propositionalized knowledge and learning from interpretations settings in Inductive Logic Programming. Individuals (also called instances) are represented as terms in the logic. A grammar-like construct called a predicate rewrite system is used to define features in the form of predicates that individuals may or may not satisfy. For learning, decision-tree algorithms of various kinds are adopted.¶ The scope of the thesis spans both theory and practice. On the theoretical side, I study in this thesis¶ 1. the representational power of different function classes and relationships between them;¶ 2. the sample complexity of some commonly-used predicate classes, particularly those involving sets and multisets;¶ 3. the computational complexity of various optimization problems associated with learning and algorithms for solving them; and¶ 4. the (efficient) learnability of different function classes in the PAC and agnostic PAC models.¶ On the practical side, the usefulness of the learning system developed is demontrated with applications in two important domains: bioinformatics and intelligent agents. Specifically, the following are covered in this thesis:¶ 1. a solution to a benchmark multiple-instance learning problem and some useful lessons that can be drawn from it;¶ 2. a successful attempt on a knowledge discovery problem in predictive toxicology, one that can serve as another proof-of-concept that real chemical knowledge can be obtained using symbolic learning;¶ 3. a reworking of an exercise in relational reinforcement learning and some new insights and techniques we learned for this interesting problem; and¶ 4. a general approach for personalizing user agents that takes full advantage of symbolic learning.
3

Higher-order proof translation

Sultana, Nikolai January 2015 (has links)
The case for interfacing logic tools together has been made countless times in the literature, but it is still an important research question. There are various logics and respective tools for carrying out formal developments, but practitioners still lament the difficulty of reliably exchanging mathematical data between tools. Writing proof-translation tools is hard. The problem has both a theoretical side (to ensure that the translation is adequate) and a practical side (to ensure that the translation is feasible and usable). Moreover, the source and target proof formats might be less documented than desired (or even necessary), and this adds a dash of reverse-engineering to what should be a system integration task. This dissertation studies proof translation for higher-order logic. We will look at the qualitative benefits of locating the translation close to the source (where the proof is generated), the target (where the proof is consumed), and in between (as an independent tool from the proof producer and consumer). Two ideas are proposed to alleviate the difficulty of building proof translation tools. The first is a proof translation framework that is structured as a compiler. Its target is specified as an abstract machine, which captures the essential features of its implementations. This framework is designed to be performant and extensible. Second, we study proof transformations that convert refutation proofs from a broad class of consistency-preserving calculi (such as those used by many proof-finding tools) into proofs in validity-preserving calculi (the kind used by many proof-checking tools). The basic method is very simple, and involves applying a single transformation uniformly to all of the source calculi's inferences, rather than applying ad hoc (rule specific) inference interpretations.
4

The standard interpretation of higher-order variables in modern logic and the concept of function in mathematics

Constant, Dimitri 22 January 2016 (has links)
A logic that utilizes higher-order quantification --quantifying over concepts (or relations), not just over the first-order level of individuals-- can be interpreted standardly or nonstandardly depending on whether one takes an intensional or extensional view of concepts. I argue that this decision is connected to how one understands the mathematical notion of function. A function is often understood as a rule that, when given an argument from a set of objects called a "domain," returns a value from a set of objects called a "codomain." Because a concept can be thought of as a two-valued function (that indicates whether or not a given object falls under the concept), having an extensional interpretation of higher-order variables --the standard interpretation-- requires that one adopt an extensional notion of function. Viewed extensionally, however, a function is understood not as a rule but rather as a correlation associating every element in a domain with an element in a codomain. When the domain is finite, the two understandings of function are equivalent (since one can define a rule for any finite correlation), but with an infinite domain, the latter understanding admits arbitrary functions, or correlations not definable by a finitely specifiable rule. Rejection of the standard interpretation is often motivated by the same reasons used to resist the extensional understanding of function. Such resistance is overt in the pronouncements of Leopold Kronecker, but is also implicit in the work of Gottlob Frege, who used an intensional notion of function in his logic. Looking at the problem historically, I argue that the extensional notion of function has been basic to mathematics since ancient times. Moreover, I claim that Gottfried Wilhelm Leibniz's combination of mathematical and metaphysical ideas helped inaugurate an extensional and ultimately model-theoretical approach to mathematical concepts that led to some of the most important applications of mathematics to science (e.g. the use of non-Euclidean geometry in the theory of general relativity). In logic, Frege's use of an intensional notion of function led to contradiction, while Richard Dedekind and Georg Cantor applied the extensional notion of function to develop mathematically revolutionary theories of the transfinite. / 2025-10-15
5

Functional Query Languages with Categorical Types

Wisnesky, Ryan 25 February 2014 (has links)
We study three category-theoretic types in the context of functional query languages (typed lambda-calculi extended with additional operations for bulk data processing). The types we study are: / Engineering and Applied Sciences
6

A Flexible, Natural Deduction, Automated Reasoner for Quick Deployment of Non-Classical Logic

Mukhopadhyay, Trisha 20 March 2019 (has links)
Automated Theorem Provers (ATP) are software programs which carry out inferences over logico-mathematical systems, often with the goal of finding proofs to some given theorem. ATP systems are enormously powerful computer programs, capable of solving immensely difficult problems. Currently, many automated theorem provers exist like E, vampire, SPASS, ACL2, Coq etc. However, all the available theorem provers have some common problems: (1) Current ATP systems tend not to try to find proofs entirely on their own. They need help from human experts to supply lemmas, guide the proof, etc. (2) There is not a single proof system available which provides fully automated platforms for both First Order Logic (FOL) and other Higher Order Logic (HOL). (3) Finally, current proof systems do not have an easy way to quickly deploy and reason over new logical systems, which a logic researcher may want to test. In response to these problems, I introduce the MATR framework. MATR is a platform-independent, codelet-based (independently operating processes) proof system with an easy-to-use Graphical User Interface (GUI), where multiple codelets can be selected based on the formal system desired. MATR provides a platform for different proof strategies like deduction and backward reasoning, along with different formal systems such as non-classical logics. It enables users to design their own proof system by selecting from the list of codelets without needing to write an ATP from scratch.
7

[en] ALFRED TARSKI: LOGICAL CONSEQUENCE, LOGICAL NOTIONS, AND LOGICAL FORMS / [pt] ALFRED TARSKI: CONSEQÜÊNCIA LÓGICA, NOÇÕES LÓGICAS E FORMAS LÓGICAS

STEFANO DOMINGUES STIVAL 17 September 2004 (has links)
[pt] O tema da presente dissertação é o problema da demarcação entre os termos lógicos e extralógicos no âmbito das ciências formais, anunciado primeiramente por Alfred Tarski em seu artigo de 1936, On the Concept of Logical Consequence. Depois de expor e discutir o problema em questão, mostrando seu surgimento a partir da necessidade de uma definição materialmente adequada do conceito de conseqüência lógica, analisamos a solução formulada por Tarski em um artigo publicado postumamente, intitulado What Are Logical Notions? Algumas discussões subsidiárias, igualmente importantes para o trabalho como um todo, dizem respeito à concepção dos conceitos de modelo e interpretação que se podem depreender dos artigos supracitados, e de como ela difere da assim chamada concepção standard em teoria de modelos. Nosso objetivo principal é mostrar o lugar ocupado pelo conceito de forma lógica na obra de Tarski, e de como sua concepção acerca deste conceito implica uma visão ampliada do conceito de conseqüência lógica, cuja caracterização correta torna necessária a estratificação das formas lógicas numa hierarquia de tipos. / [en] The subject of this paper is the problem of demarcation between logical and extra-logical terms of formal languages, as formulated for the first time by Tarski in his 1936 paper On the Concept of Logical Consequence. After presenting and discussing the demarcation problem, pointing out how it arises from the need for a materially adequate definition of the concept of logical consequence, we analyze the solution presented by Tarski in his posthumously published paper, entitled What Are Logical Notions? Some subsidiary issues, that are also important for the work as a whole, concern the conception of model and interpretation that springs from the two papers mentioned, and how this conception differs from the standard conception in model theory. Our main goal is to show the place occupied by the concept of logical form in Tarski`s work, and how his conception of this concept implies a broader view about the related concept of logical consequence whose correct characterization makes necessary the stratification of logical forms into a hierarchy of types.
8

From Language to Thought: On the Logical Foundations of Semantic Theory

Sbardolini, Giorgio 03 July 2019 (has links)
No description available.
9

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. 24 January 2011 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.
10

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. 24 January 2011 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.

Page generated in 0.0473 seconds