Spelling suggestions: "subject:"[een] IMPORTANCE SAMPLING"" "subject:"[enn] IMPORTANCE SAMPLING""
41 |
Embedding population dynamics in mark-recapture modelsBishop, Jonathan R. B. January 2009 (has links)
Mark-recapture methods use repeated captures of individually identifiable animals to provide estimates of properties of populations. Different models allow estimates to be obtained for population size and rates of processes governing population dynamics. State-space models consist of two linked processes evolving simultaneously over time. The state process models the evolution of the true, but unknown, states of the population. The observation process relates observations on the population to these true states. Mark-recapture models specified within a state-space framework allow population dynamics models to be embedded in inference ensuring that estimated changes in the population are consistent with assumptions regarding the biology of the modelled population. This overcomes a limitation of current mark-recapture methods. Two alternative approaches are considered. The "conditional" approach conditions on known numbers of animals possessing capture history patterns including capture in the current time period. An animal's capture history determines its state; consequently, capture parameters appear in the state process rather than the observation process. There is no observation error in the model. Uncertainty occurs only through the numbers of animals not captured in the current time period. An "unconditional" approach is considered in which the capture histories are regarded as observations. Consequently, capture histories do not influence an animal's state and capture probability parameters appear in the observation process. Capture histories are considered a random realization of the stochastic observation process. This is more consistent with traditional mark-recapture methods. Development and implementation of particle filtering techniques for fitting these models under each approach are discussed. Simulation studies show reasonable performance for the unconditional approach and highlight problems with the conditional approach. Strengths and limitations of each approach are outlined, with reference to Soay sheep data analysis, and suggestions are presented for future analyses.
|
42 |
Simulation d'évènements rares par Monte Carlo dans les réseaux hautement fiables / Rare event simulation using Monte Carlo in highly reliable networksSaggadi, Samira 08 July 2013 (has links)
Le calcul de la fiabilité des réseaux est en général un problème NP-difficile. On peut par exemple s’intéresser à la fiabilité des systèmes de télécommunications où l'on veut évaluer la probabilité qu’un groupe sélectionné de nœuds peuvent communiquer. Dans ce cas, un ensemble de nœuds déconnectés peut avoir des conséquences critiques, que ce soit financières ou au niveau de la sécurité. Une estimation précise de la fiabilité est ainsi nécessaire. Dans le cadre de ce travail, on s'intéresse à l’étude et au calcul de la fiabilité des réseaux hautement fiables. Dans ce cas la défiabilité est très petite, ce qui rend l’approche standard de Monte Carlo inutile, car elle nécessite un grand nombre d’itérations. Pour une bonne estimation de la fiabilité des réseaux au moindre coût, nous avons développé de nouvelles techniques de simulation basées sur la réduction de variance par échantillonnage préférentiel. / Network reliability determination, is an NP-hard problem. For instance, in telecommunications, it is desired to evaluate the probability that a selected group of nodes communicate or not. In this case, a set of disconnected nodes can lead to critical financials security consequences. A precise estimation of the reliability is, therefore, needed. In this work, we are interested in the study and the calculation of the reliability of highly reliable networks. In this case the unreliability is very small, which makes the standard Monte Carlo approach useless, because it requires a large number of iterations. For a good estimation of system reliability with minimum cost, we have developed new simulation techniques based on variance reduction using importance sampling.
|
43 |
Stochastic Modeling and Simulation of Gene NetworksXu, Zhouyi 06 May 2010 (has links)
Recent research in experimental and computational biology has revealed the necessity of using stochastic modeling and simulation to investigate the functionality and dynamics of gene networks. However, there is no sophisticated stochastic modeling techniques and efficient stochastic simulation algorithms (SSA) for analyzing and simulating gene networks. Therefore, the objective of this research is to design highly efficient and accurate SSAs, to develop stochastic models for certain real gene networks and to apply stochastic simulation to investigate such gene networks. To achieve this objective, we developed several novel efficient and accurate SSAs. We also proposed two stochastic models for the circadian system of Drosophila and simulated the dynamics of the system. The K-leap method constrains the total number of reactions in one leap to a properly chosen number thereby improving simulation accuracy. Since the exact SSA is a special case of the K-leap method when K=1, the K-leap method can naturally change from the exact SSA to an approximate leap method during simulation if necessary. The hybrid tau/K-leap and the modified K-leap methods are particularly suitable for simulating gene networks where certain reactant molecular species have a small number of molecules. Although the existing tau-leap methods can significantly speed up stochastic simulation of certain gene networks, the mean of the number of firings of each reaction channel is not equal to the true mean. Therefore, all existing tau-leap methods produce biased results, which limit simulation accuracy and speed. Our unbiased tau-leap methods remove the bias in simulation results that exist in all current leap SSAs and therefore significantly improve simulation accuracy without sacrificing speed. In order to efficiently estimate the probability of rare events in gene networks, we applied the importance sampling technique to the next reaction method (NRM) of the SSA and developed a weighted NRM (wNRM). We further developed a systematic method for selecting the values of importance sampling parameters. Applying our parameter selection method to the wSSA and the wNRM, we get an improved wSSA (iwSSA) and an improved wNRM (iwNRM), which can provide substantial improvement over the wSSA in terms of simulation efficiency and accuracy. We also develop a detailed and a reduced stochastic model for circadian rhythm in Drosophila and employ our SSA to simulate circadian oscillations. Our simulations showed that both models could produce sustained oscillations and that the oscillation is robust to noise in the sense that there is very little variability in oscillation period although there are significant random fluctuations in oscillation peeks. Moreover, although average time delays are essential to simulation of oscillation, random changes in time delays within certain range around fixed average time delay cause little variability in the oscillation period. Our simulation results also showed that both models are robust to parameter variations and that oscillation can be entrained by light/dark circles.
|
44 |
Quasi Importance SamplingHörmann, Wolfgang, Leydold, Josef January 2005 (has links) (PDF)
There arise two problems when the expectation of some function with respect to a nonuniform multivariate distribution has to be computed by (quasi-) Monte Carlo integration: the integrand can have singularities when the domain of the distribution is unbounded and it can be very expensive or even impossible to sample points from a general multivariate distribution. We show that importance sampling is a simple method to overcome both problems. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
|
45 |
The Generalized Multiset Sampler: Theory and Its ApplicationKim, Hang Joon 25 June 2012 (has links)
No description available.
|
46 |
Mathematical methods for portfolio managementOndo, Guy-Roger Abessolo 08 1900 (has links)
Portfolio Management is the process of allocating an investor's wealth to in
vestment opportunities over a given planning period. Not only should Portfolio
Management be treated within a multi-period framework, but one should also take into consideration
the stochastic nature of related parameters.
After a short review of key concepts from Finance Theory, e.g. utility function, risk attitude,
Value-at-rusk estimation methods, a.nd mean-variance efficiency, this work describes a framework
for the formulation of the Portfolio Management problem in a Stochastic Programming setting.
Classical solution techniques for the resolution of the resulting Stochastic Programs (e.g.
L-shaped Decompo sition, Approximation of the probability function) are presented. These are
discussed within both the two-stage and the multi-stage case with a special em phasis on the
former. A description of how Importance Sampling and EVPI are used to improve the efficiency of
classical methods is presented. Postoptimality Analysis, a sensitivity analysis method, is also
described. / Statistics / M. Sc. (Operations Research)
|
47 |
Robust light transport simulation in participating media / Robust light transport simulation in participating mediaVévoda, Petr January 2015 (has links)
Light transport simulation is used in realistic image synthesis to create physically plausible images of virtual scenes. Important components of the scenes are participating media (e.g. air, water, skin etc.). Efficient computation of light transport in participating media robust to their large diversity is still an open problem. We implemented the UPBP algorithm recently developed by Křivánek et al. It addresses the problem by combining several complementary previous methods using multiple importance sampling, and excels at rendering scenes where the previous methods alone fail. The implementation is available online, we focused on its thorough description to facilitate and support further research in this field. Powered by TCPDF (www.tcpdf.org)
|
48 |
[en] STOCHASTIC VOLATILITY VIA MONTE CARLO LIKELIHOOD: A COMPARATIVE STUDY / [pt] VOLATILIDADE ESTOCÁSTICA VIA VEROSSIMILHANÇA DE MONTE CARLO: UM ESTUDO COMPARATIVORAPHAEL PIMENTEL DE OLIVEIRA CRUZ 26 May 2004 (has links)
[pt] Esta dissertação discute o modelo de Volatilidade
Estocástica (SV) estimado via metodologia Durbin & Koopman,
chamada Verossimilhança de Monte Carlo( MCL). Comparou-se a
cobertura condicional do valor em risco (VaR), deste
modelo, com as do modelo GARCH(1,1) e SV estimado via Quasi
Máxima Verossimilhança (QML). Os modelos foram estendindos a
distúrbios Gaussiano e t-Student na equação da média. O
desempenho dos modelos foi avaliado fora da amostra para
retornos diários dos índices Ibovespa, S&P500, Nasdaq e Dow
Jones. Para o critério de avaliação foi utilizado o teste
de Christoffersen. Foram econtradas evidências empíricas
de que o modelo SV estimado via MCL é tão eficiente quanto
o modelo GARCH(1,1), em termos da cobertura condicional do
VaR. / [en] This dissertation discusses the estimation of the
Stochastic Volatility (SV)model using a Durbin and Koopman
methodology called Monte Carlo Like-lihood (MCL). The
conditional coverage of value at risk (VaR) of SV via
MCL model was compared to the GARCH (1,1) model and to the
SV model via Quasi Maximum Likelihood (QML) estimation. The
models were extended to Gaussian and Student-t isturbances
in the mean equation. The performances of the models were
evaluated out-of-sample for daily returns on the Ibovespa,
S&P500, Nasdaq and Dow Jones indexes. Christoffersen test
were applied for the evaluation criteria. In terms of the
VaR conditional coverage, empirical evidences indicate that
the SV model via MCL estimation is as efficient as the
GARCH (1,1) model.
|
49 |
Métodos de Monte Carlo para amostragem de permutações com restrições e aplicações / Monte Carlo sampling of restricted permutations and aplicationsReale, Fábio Tosetto 06 July 2018 (has links)
Neste trabalho definimos o processo de exclusão simples simétrico em tempo discreto sobre grafos por meio de permutações com restrições sobre os índices dos vértices dos grafos. O processo é uma generalização das permutações dos índices do grafo completo. Apresentamos algoritmos de Monte Carlo e de amostragem sequencial por importância para amostrar permutações com restrições inspirados pelo problema análogo de calcular permanentes. Como aplicação, utilizamos esses algoritmos para estimar os tempos de relaxação do processo de exclusão simples simétrico em tempo discreto sobre grafos aleatórios densos de Erdös-Rényi com laços / In this work we define the symmetric simple exclusion process in discrete time over graphs by means of suitably restricted permutations over the labels of the vertices of the graphs. The process is a generalization of the shuffling of labels on the complete graph. Straightforward Monte Carlo and sequential importance sampling algorithms to sample restricted permutations inspired by the related problem of computing permanents are discussed. We illustrate the formalism by estimating the relaxation times of the symmetric simple exclusion process in discrete time over dense loop-augmented Erdös-Rényi random graphs
|
50 |
Optimisation des méthodes algorithmiques en inférence bayésienne. Modélisation dynamique de la transmission d'une infection au sein d'une population hétérogène / Optimization of algorithmic methods for Bayesian inference. Dynamic modeling of infectious disease transmission in heterogeneous populationGajda, Dorota 13 October 2011 (has links)
Ce travail se décompose en deux grandes parties, "Estimations répétées dans le cadre de la modélisation bayésienne" et "Modélisation de la transmission de maladies infectieuses dans une population. Estimation des paramètres.". Les techniques développées dans la première partie sont utilisées en fin de la seconde partie. La première partie est consacrée à des optimisations d'algorithmes stochastiques très souvent utilisés, notamment dans le contexte des modélisations Bayésiennes. Cette optimisation est particulièrement faite lors de l'étude empirique d'estimateurs des paramètres d'un modèle où les qualités des estimateurs sont évaluées sur un grand nombre de jeux de données simulées. Quand les lois a posteriori ne sont pas explicites, le recours à des algorithmes stochastiques itératifs (de la famille des algorithmes dits de Monte Carlo par Chaîne de Makov) pour approcher les lois a posteriori est alors très couteux en temps car doit être fait pour chaque jeu de données. Dans ce contexte, ce travail consiste en l'étude de solutions évitant un trop grand nombre d'appels à ces algorithmes mais permettant bien-sûr d'obtenir malgré tout des résultats précis. La principale technique étudiée dans cette partie est celle de l'échantillonnage préférentiel. La seconde partie est consacrée aux études de modèles épidémiques, en particulier le modèle compartimental dit SIS (Susceptible-Infecté-Susceptible) dans sa version stochastique. L'approche stochastique permet de prendre en compte l'hétérogénéité de l'évolution de la maladie dans la population. les approches par des processus Markoviens sont étudiés où la forme des probabilités de passage entre les états est non linéaire. La solution de l'équation différentielle en probabilité n'est alors en général pas explicite. Les principales techniques utilisées dans cette partie sont celles dites de développement de l'équation maîtresse ("master equation") appliquées au modèle SIS avec une taille de population constante. Les propriétés des estimateurs des paramètres sont étudiées dans le cadre fréquentiste et bayésien. Concernant l'approche Bayésienne, les solutions d'optimisation algorithmique de la première partie sont appliquées. / This work consists in two parts, "Repeated estimates in bayesian modelling " and " Modelling of the transmission of infectious diseases in a population. Estimation of the parameters". Techniques developed in the first part are used at the end of the second part.The first part deals with optimizations of very often used stochastic algorithms, in particular in the context of Bayesian modelling. This optimization is particularly made when empirical study of estimates based on numerous simulated data sets is done. When posterior distribution of parameters are not explicit, its approximation is obtained via iterative stochastic algorithms (of the family of Markov Chain Monte Carlo) which is computationally expensive because has to be done on each data set. In this context, solutions are proposed avoiding an excess large number of MCMC calls but nevertheless giving accurate results. The Importance Sampling method is used in combination with MCMC in Bayesian simulation study. The second part deals with epidemic models, in particular the compartimental model SIS (Susceptible-Infectious-Susceptible) in its stochastic version. The stochastic approach allows to take into account the heterogeneousness of disease evolution in the population. Markov Process is particularly studied where transition probability between states is not linear, the solution of the differential equation in probability being then generally not explicit. The main techniques used in this part are the ones based on Master equation applied on SIS model with a constant population size. Empirical properties of parameters estimates are studied in frequentist and Bayesian context with algorithmic optimization presented in the first part.
|
Page generated in 0.0332 seconds