Spelling suggestions: "subject:"[een] INTEROPERABILITY"" "subject:"[enn] INTEROPERABILITY""
251 |
Standards-based sensor web for wide area monitoring of power systemsDahal, Nischal 08 August 2009 (has links)
The balance of supply and demand of energy is the key factor in the stability of power systems. A small disturbance in the supply demand relationship, if not properly handled, can cascade into a major outage, costing millions of dollars to the stakeholders. Proper monitoring and exchange of critical information in real time is the only solution to prevent the instability in this vulnerable system. But, the disparity in the protocols used by power utilities and the lack of infrastructure for information exchange are proving to be hindrance to obtaining a reliable de-regularized power industry. In this thesis, an emerging Sensor Web Enablement (SWE) has been adapted for the wide area monitoring of power systems. SWE and CIM provide a solution to both problems; the heterogeneity of data and the lack of central repository of the data for proper action. The sensor data from utilities that are published in CIM were modeled thorough a SensorML and exposed via a Sensor Observation Service (SOS). This provides a standard method for discovering and accessing the sensor data between utilities and facilitates rapid response functionality to handle contingences.
|
252 |
A Backtracking Framework for Beowulf Clusters with an Extension to Multi-cluster Computation and SAT Benchmark Problem ImplementationKouril, Michal January 2006 (has links)
No description available.
|
253 |
Pedagogers åsikter och erfarenheter gällande digitala undervisningsverktygs möjligheter för ett mer aktivt lärande : Hur digitala verktyg kan bidra till en ökad inlärning genom ökad interaktion och interoperabilitet / Educators’ Attitudes Towards Digital Education Tools as Active Learning ToolsGara, Karwan January 2022 (has links)
In recent years, we have witnessed a faster pace of implementation of digital resources in schools, not least due to the covid-19 pandemic. Digital education tools are today considered a main component of schools and are seen as a hygiene factor. In 2017, the Swedish government introduced a national strategy to further digitalise the Swedish schools for that reason. It is believed that it is a matter of equality, that all students deserve a sufficient level of digital competence to improve their learning capabilities. Based on factors linked to active learning and interaction, the purpose of the study is to investigate educators’ experiences of digital teaching in primary schools and how it affects their work. To answer the study’s questions, semi-structured interviews have been conducted with educators who work at schools. The results show that the educators have a positive outlook regarding the use of digital resources and that is makes it easier for educators while at the same time providing students with resources for increased learning. There was thus no talk of a return, but there was criticism around the scope, evaluation, support networks, interaction and interoperability of these tools. However, the theoretical framework shows that there are forces at work that have identified the same problems and are working actively to address these matters. / Under de senaste åren har vi fått bevittna en ännu snabbare takt av implementering av digitala resurser på skolverksamheter, inte minst på grund av covid-19 pandemin. Digitala verktyg anses idag vara en huvudkomponent i skolverksamheter och ses som en hygienfaktor. År 2017 införde regeringen en nationell strategi för att digitalisera alla skolverksamheter av den anledningen. Man menar att det faktiskt är en fråga om jämställdhet, att alla elever ska få besitta en tillräcklig digital kompetens för att kunna ökas in inlärning. Utifrån faktorer kopplade till en aktiv kunskapsproduktion och interaktionsmöjligheter, är studiens syfte att undersöka pedagogers upplevelser av digitalundervisning främst på grundskolan och hur det påverkar deras arbete. För att besvara studiens frågeställningar har det genomförts semistrukturerade intervjuer med pedagoger som arbetar på skolverksamheter. Resultaten visar att pedagogerna har en positiv utgångspunkt gällande digitala resurser och att det underlättar för pedagoger samtidigt som det tillför eleverna med resurser för en ökad inlärning. Det talades alltså inte om en tillbakagång men man förde kritik mot omfattningen, utvärderingen, stödnätverket, interaktiviteten och interoperabiliteten kring dessa verktyg. Det teoretiska ramverket påvisar dock att det finns en mängd olika aktörer som i nuläget arbetar med att lösa de problem som identifierats av respondenterna.
|
254 |
Data quality and governance in a UK social housing initiative: Implications for smart sustainable citiesDuvier, Caroline, Anand, Prathivadi B., Oltean-Dumbrava, Crina 03 March 2018 (has links)
No / Smart Sustainable Cities (SSC) consist of multiple stakeholders, who must cooperate in order for SSCs to be successful. Housing is an important challenge and in many cities, therefore, a key stakeholder are social housing organisations. This paper introduces a qualitative case study of a social housing provider in the UK who implemented a business intelligence project (a method to assess data networks within an organisation) to increase data quality and data interoperability. Our analysis suggests that creating pathways for different information systems within an organisation to ‘talk to’ each other is the first step. Some of the issues during the project implementation include the lack of training and development, organisational reluctance to change, and the lack of a project plan. The challenges faced by the organisation during this project can be helpful for those implementing SSCs. Currently, many SSC frameworks and models exist, yet most seem to neglect localised challenges faced by the different stak
|
255 |
Context Sensitive Interaction Interoperability for Distributed Virtual EnvironmentsAhmed, Hussein Mohammed 23 June 2010 (has links)
The number and types of input devices and related interaction technique types are growing rapidly. Innovative input devices such as game controllers are no longer used just for games, propriety consoles and specific applications, they are also used in many distributed virtual environments, especially the so-called serious virtual environments.
In this dissertation a distributed, service based framework is presented to offer context-sensitive interaction interoperability that can support mapping between input devices and suitable application tasks given the attributes (device, applications, users, and interaction techniques) and the current user context without negatively impacting performances of large scale distributed environments.
The mapping is dynamic and context sensitive taking into account the context dimensions of both the virtual and real planes. What device or device component to use, how and when to use them depend on the application, task performed, the user and the overall context, including location and presence of other users. Another use of interaction interoperability is as a testbed for input devices, and interaction techniques making it possible to test reality based interfaces and interaction techniques with legacy applications.
The dissertation provides a description how the framework provides these affordances and a discussion of motivations, goals and the addressed challenges. Several proof of the concept implementations were developed and an evaluation of the framework performance (in terms of system characteristics) demonstrates viability, scalability and negligible delays. / Ph. D.
|
256 |
Improving Polymorphism and Concurrency in Common Object ModelsChalla, Siva Prasadarao Jr. 03 March 1998 (has links)
Most common object models of distributed object systems have a limited set of object-oriented features, lacking the advanced features of `polymorphism' (an abstraction mechanism that represents a quality or state of being able to assume different forms) and `concurrency' (the ability to have more than one thread of execution in an object simultaneously). The lack of support for advanced features is a serious limitation because it restricts the development of new components and limits reuse of existing of components that use these advanced features. As a result, wrappers must be used that hide the advanced features or components must be re-implemented using only the features of the common object model.
In this dissertation, a new direction of research centered on a subset of object-oriented languages, specifically statically typed languages, is considered. One of the major drawbacks of existing distributed object systems is that they cater to a broad domain of programming languages including both object-oriented as well as non object-oriented languages. Mapping an object model into a non object-oriented language is a complex task and it does not appear natural to a native language user.
The interoperable common object model (ICOM) proposed in this dissertation is an attempt to elevate common object models (with the advanced features of polymorphism and concurrency) closer to the object models of statically typed object-oriented languages. Specific features of the ICOM object model include: remote inheritance, method overloading, parameterized types, and guard methods. The actor model and reflection techniques are used to develop a uniform implementation framework for the ICOM object model in C++ and Modula-3. Prototype applications were implemented to demonstrate the utility of the advanced features of the ICOM object model.
The main contributions of this dissertation are: design and implementation of a powerful common object model, an architecture for distributed compilation, and an implementation of a distributed object model using the actor model. / Ph. D.
|
257 |
A Cyber-Physical System (CPS) Approach to Support Worker Productivity based on Voice-Based Intelligent Virtual AgentsLinares Garcia, Daniel Antonio 16 August 2022 (has links)
The Architecture, Engineering, and Construction (AEC) industry is currently challenged by low productivity trends and labor shortages. Efforts in academia and industry alike invested in developing solutions to this pressing issue. The majority of such efforts moved towards modernization of the industry, making use of digitalization approaches such as cyber-physical systems (CPS). In this direction, various research works have developed methods to capture information from construction environments and elements and provide monitoring capabilities to measure construction productivity at multiple levels. At the root of construction productivity, the productivity at the worker level is deemed critical. As a result, previous works explored monitoring the productivity of construction workers and resources to address the industry's productivity problems. However, productivity trends are not promising and show a need to more rigorously address productivity issues. Labor shortages also exacerbated the need for increasing the productivity of the current labor workers.
Active means to address productivity have been explored as a solution in recent years. As a result, previous research took advantage of CPS and developed systems that sense construction workers' actions and environment and enable interaction with workers to render productivity improvements. One viable solution to this problem is providing on-demand activity-related information to the workers while at work, to decrease the need for manually seeking information from different sources, including supervisors, thereby improving their productivity. Especially, construction workers whose activities involve visual and manual limitations need to receive more attention, as seeking information can jeopardize their safety. Multiple labor trades such as plumbing, steel work, or carpenters are considered within this worker classification. These workers rely on knowledge gathered from the construction project documentation and databases, but have difficulties accessing this information while doing their work. Research works have explored the use of knowledge retrieval systems to give access to construction project data sources to construction workers through multiple methods, including information booths, mobile devices, and augmented reality (AR). However, these solutions do not address the need of this category of workers in receiving on-demand activity related information during their work, without negatively impacting their safety.
This research focuses on voice, as an effective modality most appropriate for construction workers whose activities impose visual and manual limit actions. to this end, first, a voice-based solution is developed that supports workers' productivity through providing access to project knowledge available in Building Information Modeling (BIM) data sources. The effect of the selected modality on these workers' productivity is then evaluated using multiple user studies. The work presented in this dissertation is structured as follows: First, in chapter 2, a literature review was conducted to identify means to support construction workers and how integration with BIM has been done in previous research. This chapter identified challenges in incorporating human factors in previous systems and opportunities for seamless integration of workers into BIM practices. In chapter 3, voice-based assistance was explored as the most appropriate means to provide knowledge to workers while performing their activities. As such, Chapter 3 presents the first prototype of a voice-based intelligent virtual agent, aka VIVA, and focuses on evaluating the human factors and testing performance of voice as a modality for worker support. VIVA was tested using a user study involving a simulated construction scenario and the results of the performance achieved through VIVA were compared with the baseline currently used in construction projects for receiving activity-related information, i.e., blueprints. Results from this assessment evidenced productivity performance improvements of users using VIVA over the baseline. Finally, chapter 4 presents an updated version of VIVA that provides automatic real-time link to BIM project data and provides knowledge to the workers through voice. This system was developed based on web platforms, allowing easier development and deployment and access to more devices for future deployment.
This study contributes to the productivity improvements in the AEC industry by empowering construction workers through providing on-demand access to project information. This is done through voice as a method that does not jeopardize workers' safety or interrupt their activities. This research contributes to the body of knowledge by developing an in-depth study of the effect of voice-based support systems on worker productivity, enabling real-time BIM-worker integration, and developing a working worker-level productivity support solution for construction workers whose activities limit them in manually accessing project knowledge. / Doctor of Philosophy / The Architecture, Engineering, and Construction (AEC) industry is currently challenged by low productivity trends and labor shortages. At the root of productivity, the improving productivity of construction workers is of critical essence. Therefore, academia and industry alike have shown great interest in research to develop solutions addressing construction worker productivity. For this purpose, monitoring systems for construction worker support have been developed, but productivity trends do not seem to improve, while labor shortages have increased productivity concerns.
Other approaches to address productivity improvements have explored active means for productivity support. These include monitoring systems that also interact with the user. Construction workers performing activities that require allocating immense attention while using both hands, e.g. plumbers, steel workers, carpenters, have not been the focus of previous research because of the challenges of their conditions and needs. The activities performed by these workers require access to construction project data and documentation. Still, it is difficult for these workers to access information from the documents while doing their work. Therefore, previous researchers have explored methodologies to bring project data and documentation to the field but providing workers on-demand access to this data and documents have not been thoroughly studied.
This research focuses on identifying the most appropriate method to provide workers access to information during activities that require more visual and manual attention. Worker support is provided by developing a solution that provides workers access to knowledge during their activities without being disruptive. The study then evaluated the effect of providing non-disruptive access to information sources enabled through the developed solution on the productivity for workers. First, in chapter 2, this study reviews the literature on approaches to connect construction project databases, a.k.a. Building Information Modeling (BIM), and workers. This review identified system types, integration approaches, and future research trends for linking BIM sources and with workers. In addition, this chapter's outcomes highlight system interoperability challenges and challenges in developing interactive systems involving humans. In chapter 3, a voice-based support system was developed as the most appropriate method for worker support during work activities that limit visual and manual worker capabilities. Then, the performance benefits of using a voice-based support system for construction workers was evaluated through a user study involving simulated construction activities. Finally, in chapter 4, this study provided a new integration method to connect BIM and workers in real-time. This system allows workers to interact with information from BIM through voice. The system was developed based on web platforms, allowing easier development and deployment and access to more devices for future deployment.
This study contributes to the productivity improvements in the AEC industry by empowering construction workers through providing on-demand access to project information. This is done through voice as a method that does not jeopardize workers' attention or interrupt their activities.
|
258 |
Disseminating Learning Tools Interoperability StandardsManzoor, Hamza 27 June 2019 (has links)
Until recently, most educational tools have worked in silos. If a teacher wanted her students to complete small programming exercises, record videos, and collaborate through discussion boards, three disconnected tools were probably needed. Learning Tools Interoperability (LTI) is a communication protocol that enables different learning tools to talk to each other and share scores with a Learning Management System (LMS). While most commercial LMS now support LTI, most educational software developed by small research efforts do not. This is often because of the lack of resources needed to understand the working of LTI and the process of using LTI in their applications. Our aim is to encourage the use of LTI within the CS Education community. We have developed tutorials that include example applications. We also provide a use case of how LTI is implemented in the OpenDSA eTextbook system. As another use case, we have enabled auto-grading of Jupyter Notebook assignments by providing immediate feedback to students and updating scores to the Canvas gradebook. We provide a Jupyter plugin to upload notebook files to the Web-CAT auto-grading system. We integrate Aalto University's ACOS content into OpenDSA as a third use case. / Master of Science / Until recently, most educational tools have worked in silos. If a teacher wanted her students to complete small programming exercises, record videos, and collaborate through discussion boards, three disconnected tools were probably needed. These disconnected tools did not integrate with the Learning Management Systems (LMS), such as Canvas and Moodle. Instructors had to manually manage these separate tools and enter scores into the LMS. There are standards such as Learning Tools Interoperability (LTI) that these learning tools can implement to enable them to talk to each other and to share scores with an LMS. However, most educational software developed by small research efforts do not support LTI. This is often because of the lack of resources needed to understand the working of LTI and the process of using LTI in their applications. We aim to encourage the use of LTI within the CS Education community. We have developed tutorials that include example applications. We also provide a use case of how LTI is implemented in OpenDSA, an eTextbook system developed at Virginia Tech. As another use case, we have enabled auto-grading of Jupyter Notebook (documents that run in a browser and can contain equations, visualizations, live code, and text) assignments by providing immediate feedback to students and updating scores to the Canvas gradebook. We provide a plugin to upload notebook files to the WebCAT auto-grading system directly from the browser. We integrate Aalto University’s ACOS content (Python and Java exercises) into OpenDSA as a third use case.
|
259 |
Hide-Metadata Based Data Integration Environment for Hydrological DatasetsRavindran, Nimmy 30 December 2004 (has links)
Efficient data integration is one of the most challenging problems in data management, interoperation and analysis. The Earth science data which are heterogeneous are collected at various geographical locations for scientific studies and operational uses. The intrinsic problem of archiving, distributing and searching such huge scientific datasets is compounded by the heterogeneity of data and queries, thus limiting scientific analysis, and generation/validation of hydrologic forecast models. The data models of hydrologic research communities such as National Weather Service (NWS), National Oceanic and Atmospheric Administration (NOAA), and US Geological Survey (USGS) are diverse and complex. A complete derivation of any useful hydrological models from data integrated from all these sources is often a time consuming process.
One of the current trends of data harvesting in scientific community is towards a distributed digital library initiative. However, these approaches may not be adequate for data sources / entities who do not want to "upload" the data into a "data pool." In view of this, we present here an effective architecture to address the issues of data integration in such a diverse environment for hydrological studies. The heterogeneities in these datasets are addressed based on the autonomy of data source in terms of design, communication, association and execution using a hierarchical integration model. A metadata model is also developed for defining data as well as the data sources, thus providing a uniform view of the data for different kind of users. An implementation of the model using web based system that integrates widely varied hydrology datasets from various data sources is also being developed. / Master of Science
|
260 |
Integrating Industry 4.0: Enhancing Operational Efficiency Through Data Digitalization A Case Study on Hitachi EnergySahadevan, Sabari Kannan, Muralikrishnan, Adithya Vijayan January 2024 (has links)
No description available.
|
Page generated in 0.0464 seconds