Spelling suggestions: "subject:"[een] LA CONDITIONAL"" "subject:"[enn] LA CONDITIONAL""
151 |
Imputation of Missing Data with Application to Commodity Futures / Imputation av saknad data med tillämpning på råvaruterminerÖstlund, Simon January 2016 (has links)
In recent years additional requirements have been imposed on financial institutions, including Central Counterparty clearing houses (CCPs), as an attempt to assess quantitative measures of their exposure to different types of risk. One of these requirements results in a need to perform stress tests to check the resilience in case of a stressed market/crisis. However, financial markets develop over time and this leads to a situation where some instruments traded today are not present at the chosen date because they were introduced after the considered historical event. Based on current routines, the main goal of this thesis is to provide a more sophisticated method to impute (fill in) historical missing data as a preparatory work in the context of stress testing. The models considered in this paper include two methods currently regarded as state-of-the-art techniques, based on maximum likelihood estimation (MLE) and multiple imputation (MI), together with a third alternative approach involving copulas. The different methods are applied on historical return data of commodity futures contracts from the Nordic energy market. By using conventional error metrics, and out-of-sample log-likelihood, the conclusion is that it is very hard (in general) to distinguish the performance of each method, or draw any conclusion about how good the models are in comparison to each other. Even if the Student’s t-distribution seems (in general) to be a more adequate assumption regarding the data compared to the normal distribution, all the models are showing quite poor performance. However, by analysing the conditional distributions more thoroughly, and evaluating how well each model performs by extracting certain quantile values, the performance of each method is increased significantly. By comparing the different models (when imputing more extreme quantile values) it can be concluded that all methods produce satisfying results, even if the g-copula and t-copula models seems to be more robust than the respective linear models. / På senare år har ytterligare krav införts för finansiella institut (t.ex. Clearinghus) i ett försök att fastställa kvantitativa mått på deras exponering mot olika typer av risker. Ett av dessa krav innebär att utföra stresstester för att uppskatta motståndskraften under stressade marknader/kriser. Dock förändras finansiella marknader över tiden vilket leder till att vissa instrument som handlas idag inte fanns under den dåvarande perioden, eftersom de introducerades vid ett senare tillfälle. Baserat på nuvarande rutiner så är målet med detta arbete att tillhandahålla en mer sofistikerad metod för imputation (ifyllnad) av historisk data som ett förberedande arbete i utförandet av stresstester. I denna rapport implementeras två modeller som betraktas som de bäst presterande metoderna idag, baserade på maximum likelihood estimering (MLE) och multiple imputation (MI), samt en tredje alternativ metod som involverar copulas. Modellerna tillämpas på historisk data förterminskontrakt från den nordiska energimarkanden. Genom att använda väl etablerade mätmetoder för att skatta noggrannheten förrespektive modell, är det väldigt svårt (generellt) att särskilja prestandan för varje metod, eller att dra några slutsatser om hur bra varje modell är i jämförelse med varandra. även om Students t-fördelningen verkar (generellt) vara ett mer adekvat antagande rörande datan i jämförelse med normalfördelningen, så visar alla modeller ganska svag prestanda vid en första anblick. Däremot, genom att undersöka de betingade fördelningarna mer noggrant, för att se hur väl varje modell presterar genom att extrahera specifika kvantilvärden, kan varje metod förbättras markant. Genom att jämföra de olika modellerna (vid imputering av mer extrema kvantilvärden) kan slutsatsen dras att alla metoder producerar tillfredställande resultat, även om g-copula och t-copula modellerna verkar vara mer robusta än de motsvarande linjära modellerna.
|
152 |
An ARCH/GARCH arbitrage pricing theory approach to modelling the return generating process of South African stock returns.Szczygielski, Jan Jakub 14 August 2013 (has links)
This study investigates the return generating process underlying the South African
stock market. The investigation of the return generating process is framed within
the Arbitrage Pricing Theory (APT) framework with the APT reinterpreted so as to
provide a conceptual framework within which the return generating process can be
investigated. In modelling the return generating process, the properties of South
African stock returns are taken into consideration and an appropriate econometric
framework in the form of Autoregressive Conditional Heteroscedastic (ARCH) and
Generalized Autoregressive Conditional Heteroscedastic (GARCH) models is
applied. Results indicate that the return generating process of South African stock
returns is described by innovations in multiple risk factors representative of several
risk categories. The multifactor model of the return generating process explains a
substantial amount of variation in South African stock returns and the
ARCH/GARCH methodology is an appropriate econometric framework for the
estimation of models of the return generating process. The APT framework is
successfully applied to model and investigate the return generating process of
South African stock returns.
|
153 |
Riscos de mercado na comercialização de energia: uma abordagem via complementação energética e gestão de portfólio de projetos, considerando a mitigação de incertezas da geração eólica. / Market risks in energy trading: an approach via energy management and project portfolio completion, considering the mitigation of uncertainties of wind generation.Tamashiro, Andre Takeshi 15 May 2014 (has links)
No setor elétrico brasileiro as fontes renováveis de energia têm se tornadas atrativas do ponto de vista do investidor devido não só aos incentivos de política de governo, como também por exibirem uma elevada competitividade, além da sinergia proveniente da complementariedade energética entre essas fontes. Por outro lado,a tomada de decisão de investimento em empreendimentos de geração tem se caracterizado cada vez mais como um processo complexo e arriscado, devido à potencial perda financeira decorrente de um fluxo de caixa bastante irregular, fundamentalmente em função da interação no mercado de curto prazo. Este trabalho descreve o problema e a solução para um investidor caracterizado por sua aversão ou apetite ao risco otimizando os recursos com restrição de risco (VaR, CVaR mesclado com conceito do CFaR). Os resultados mostram que para parâmetros usuais que condicionam o risco financeiro, tais como,(i) a taxa de investimento, (ii) preço de contrato de venda e (iii) custo de investimento, o modelo busca a solução para a melhor alocação de investimento, representada por um portfólio ótimo de projetos, respeitando limites fixados para o montante a ser investido e o risco financeiro correspondente. De forma geral, a conceituação da medida de aversão a risco e sua implementação no modelo de otimização desenvolvido permitiram obter resultados robustos para o tipo de problema abordado e a diversidade de situações analisada a partir de estudos de caso. / Brazilian electricity sector in renewable energy sources has become attractive from the investor point of view not only because of government policy incentives, but also to exhibit a high competitiveness beyond energy synergy from the complementarity between energy sources. However, the decision making of investments in generation capacity has come to characterize a complex and risky process, because of the potential financial loss resulting from a highly irregular cash flow, mainly due to the interaction in the short-term market. This paper describes the problem and solution for the risk averse investor optimizing financial resources constrained risk (VaR, CVaR merged with the concept CFaR). The results show that for the risk factors, as for instance, investment rate, sales price and cost of investment contract, the model responds within the limits of tax risks. In general, the concept of measure of risk aversion and its implementation in the optimization model developed is shown robust to the type of problem addressed.
|
154 |
Diagnóstico de influência bayesiano em modelos de regressão da família t-assimétrica / Bayesian influence diagnostic in skew-t family linear regression modelsSilva, Diego Wesllen da 05 May 2017 (has links)
O modelo de regressão linear com erros na família de distribuições t-assimétrica, que contempla as distribuições normal, t-Student e normal assimétrica como casos particulares, tem sido considerado uma alternativa robusta ao modelo normal. Para concluir qual modelo é, de fato, mais robusto, é importante ter um método tanto para identificar uma observação como discrepante quanto aferir a influência que esta observação terá em nossas estimativas. Nos modelos de regressão bayesianos, uma das medidas de identificação de observações discrepantes mais conhecidas é a conditional predictive ordinate (CPO). Analisamos a influência dessas observações nas estimativas tanto de forma global, isto é, no vetor completo de parâmetros do modelo quanto de forma marginal, apenas nos parâmetros regressores. Consideramos a norma L1 e a divergência Kullback-Leibler como medidas de influência das observações nas estimativas dos parâmetros. Além disso, encontramos as distribuições condicionais completas de todos os modelos para o uso do algoritmo de Gibbs obtendo, assim, amostras da distribuição a posteriori dos parâmetros. Tais amostras são utilizadas no calculo do CPO e das medidas de divergência estudadas. A principal contribuição deste trabalho é obter as medidas de influência global e marginal calculadas para os modelos t-Student, normal assimétrico e t-assimétrico. Na aplicação em dados reais originais e contaminados, observamos que, em geral, o modelo t-Student é uma alternativa robusta ao modelo normal. Por outro lado, o modelo t-assimétrico não é, em geral, uma alternativa robusta ao modelo normal. A capacidade de robustificação do modelo t-assimétrico está diretamente ligada à posição do resíduo do ponto discrepante em relação a distribuição dos resíduos. / The linear regression model with errors in the skew-t family, which includes the normal, Student-t and skew normal distributions as particular cases, has been considered as a robust alternative to the normal model. To conclude which model is in fact more robust its important to have a method to identify an observation as outlier, as well as to assess the influence of this observation in the estimates. In bayesian regression models, one of the most known measures to identify an outlier is the conditional predictive ordinate (CPO). We analyze the influence of these observations on the estimates both in a global way, that is, in the complete parameter vector of the model and in a marginal way, only in the regressor parameters. We consider the L1 norm and the Kullback-Leibler divergence as influence measures of the observations on the parameter estimates. Using the bayesian approach, we find the complete conditional distributions of all the models for the usage of the Gibbs sampler thus obtaining samples of the posterior distribution of the parameters. These samples are used in the calculation of the CPO and the studied divergence measures. The major contribution of this work is to present the global and marginal influence measures calculated for the Student-t, skew normal and skew-t models. In the application on original and contaminated real data, we observed that in general the Student-t model is a robust alternative to the normal model. However, the skew-t model is not a robust alternative to the normal model. The robustification capability of the skew-t model is directly linked to the position of the residual of the outlier in relation to the distribution of the residuals.
|
155 |
Direct quadrature conditional moment closure for turbulent non-premixed combustionAli, Shaukat January 2014 (has links)
The accurate description of the turbulence chemistry interactions that can determine chemical conversion rates and flame stability in turbulent combustion modelling is a challenging research area. This thesis presents the development and implementation of a model for the treatment of fluctuations around the conditional mean (i.e., the auto-ignition and extinction phenomenon) of realistic turbulence-chemistry interactions in computational fluid dynamics (CFD) software. The wider objective is to apply the model to advanced combustion modelling and extend the present analysis to larger hydrocarbon fuels and particularly focus on the ability of the model to capture the effects of particulate formation such as soot. A comprehensive approach for modelling of turbulent combustion is developed in this work. A direct quadrature conditional moment closure (DQCMC) method for the treatment of realistic turbulence-chemistry interactions in computational fluid dynamics (CFD) software is described. The method which is based on the direct quadrature method of moments (DQMOM) coupled with the Conditional Moment Closure (CMC) equations is in simplified form and easily implementable in existing CMC formulation for CFD code. The observed fluctuations of scalar dissipation around the conditional mean values are captured by the treatment of a set of mixing environments, each with its pre-defined weight. In the DQCMC method the resulting equations are similar to that of the first-order CMC, and the “diffusion in the mixture fraction space” term is strictly positive and no correction factors are used. Results have been presented for two mixing environments, where the resulting matrices of the DQCMC can be inverted analytically. Initially the DQCMC is tested for a simple hydrogen flame using a multi species chemical scheme containing nine species. The effects of the fluctuations around the conditional means are captured qualitatively and the predicted results are in very good agreement with observed trends from direct numerical simulations (DNS). To extend the analysis further and validate the model for larger hydrocarbon fuel, the simulations have been performed for n-heptane flame using detailed multi species chemical scheme containing 67 species. The hydrocarbon fuel showed improved results in comparison to the simple hydrogen flame. It suggests that higher hydrocarbons are more sensitive to local scalar dissipation rate and the fluctuations around the conditional means than the hydrogen. Finally, the DQCMC is coupled with a semi-empirical soot model to study the effects of particulate formation such as soot. The modelling results show to predict qualitatively the trends from DNS and are in very good agreement with available experimental data from a shock tube concerning ignition delays time. Furthermore, the findings suggest that the DQCMC approach is a promising framework for soot modelling.
|
156 |
Diagnóstico de influência bayesiano em modelos de regressão da família t-assimétrica / Bayesian influence diagnostic in skew-t family linear regression modelsDiego Wesllen da Silva 05 May 2017 (has links)
O modelo de regressão linear com erros na família de distribuições t-assimétrica, que contempla as distribuições normal, t-Student e normal assimétrica como casos particulares, tem sido considerado uma alternativa robusta ao modelo normal. Para concluir qual modelo é, de fato, mais robusto, é importante ter um método tanto para identificar uma observação como discrepante quanto aferir a influência que esta observação terá em nossas estimativas. Nos modelos de regressão bayesianos, uma das medidas de identificação de observações discrepantes mais conhecidas é a conditional predictive ordinate (CPO). Analisamos a influência dessas observações nas estimativas tanto de forma global, isto é, no vetor completo de parâmetros do modelo quanto de forma marginal, apenas nos parâmetros regressores. Consideramos a norma L1 e a divergência Kullback-Leibler como medidas de influência das observações nas estimativas dos parâmetros. Além disso, encontramos as distribuições condicionais completas de todos os modelos para o uso do algoritmo de Gibbs obtendo, assim, amostras da distribuição a posteriori dos parâmetros. Tais amostras são utilizadas no calculo do CPO e das medidas de divergência estudadas. A principal contribuição deste trabalho é obter as medidas de influência global e marginal calculadas para os modelos t-Student, normal assimétrico e t-assimétrico. Na aplicação em dados reais originais e contaminados, observamos que, em geral, o modelo t-Student é uma alternativa robusta ao modelo normal. Por outro lado, o modelo t-assimétrico não é, em geral, uma alternativa robusta ao modelo normal. A capacidade de robustificação do modelo t-assimétrico está diretamente ligada à posição do resíduo do ponto discrepante em relação a distribuição dos resíduos. / The linear regression model with errors in the skew-t family, which includes the normal, Student-t and skew normal distributions as particular cases, has been considered as a robust alternative to the normal model. To conclude which model is in fact more robust its important to have a method to identify an observation as outlier, as well as to assess the influence of this observation in the estimates. In bayesian regression models, one of the most known measures to identify an outlier is the conditional predictive ordinate (CPO). We analyze the influence of these observations on the estimates both in a global way, that is, in the complete parameter vector of the model and in a marginal way, only in the regressor parameters. We consider the L1 norm and the Kullback-Leibler divergence as influence measures of the observations on the parameter estimates. Using the bayesian approach, we find the complete conditional distributions of all the models for the usage of the Gibbs sampler thus obtaining samples of the posterior distribution of the parameters. These samples are used in the calculation of the CPO and the studied divergence measures. The major contribution of this work is to present the global and marginal influence measures calculated for the Student-t, skew normal and skew-t models. In the application on original and contaminated real data, we observed that in general the Student-t model is a robust alternative to the normal model. However, the skew-t model is not a robust alternative to the normal model. The robustification capability of the skew-t model is directly linked to the position of the residual of the outlier in relation to the distribution of the residuals.
|
157 |
Sistema de suporte à decisão contratual ótima de UHEs no mercado de energia elétrica utilizando gerenciamento de risco / A decision support system optimal contractual in the electricity market using risk managementArtur Barbosa Bernardes Ferreira 26 July 2012 (has links)
O modelo de comercialização de energia elétrica operante no Brasil é fruto da reestruturação do Setor Elétrico Brasileiro (SEB), que se iniciou na década de 90. Este modelo atual, mais estruturado, impulsionou os investimentos privados no setor nos últimos anos, fazendo com que a comercialização de energia se tornasse algo de grande representatividade dentro do setor elétrico. Este modelo de comercialização como é hoje, dividido em dois ambientes, dinâmico e em constante evolução, é alvo de inúmeros investidores, principalmente no Ambiente de Contratação Livre (ACL) onde o número de agentes cresceu consideravelmente nos últimos anos, e gerou movimentações financeiras recordes. Associado a este crescimento expressivo, os riscos inerentes de mercado também se mostram relevantes e de fundamental necessidade de gerenciamento para o equilíbrio financeiro do investidor. Dessa forma, este trabalho propõe uma análise acerca da comercialização de energia no mercado brasileiro, quanto ao gerenciamento do risco por parte de um agente gerador operando no ACL, através da implementação de um otimizador contratual que ajude na tomada de decisão de quanta energia destinar a cada contrato, de modo a maximizar a receita do agente a um risco controlável. / The present marketing model of electric power in Brazil is the result of the restructuring of the Brazilian Electric Sector (BES), which began in the 90s. This current model, somewhat more structured, stimulated private investment in the sector in recent years; this way the electric power´s market acquired substantial representation within the electricity sector. The current market model, having two different commercial environments, dynamic and constantly evolving, has been attracting many investors, especially in the Free Contracting Environment (FCE) where the number of agents has grown considerably in recent years, and generated record number of financial transactions. Associated with this significant growth, the inherent risks in this market are effectively of concern and need being managed to ensure the financial balance of the investor. Therefore, this work proposes an analysis about the energy trading in the Brazilian market, as to the management of risk by an agent generator operating in the FCE, through the implementation of a contract optimizer that helps in making decisions on how construct a contract portfolio in order to maximizes the agent revenue under a controllable risk.
|
158 |
Programação linear com controle de risco para o planejamento da operação do SIN / Linear programming with risk control for the operation planning of SINRui Bertho Junior 08 March 2013 (has links)
O planejamento da operação energética do sistema interligado nacional brasileiro é realizado por uma cadeia de modelos computacionais de otimização e simulação da operação. Entretanto, o risco de déficit, um importante indicador de segurança energética no setor elétrico, é tratado como uma variável de saída dos modelos computacionais. No planejamento de médio prazo é utilizado o software NEWAVE, que utiliza uma representação agregada em subsistemas equivalentes. Este trabalho propõe a implementação de um modelo de otimização linear para o planejamento da operação de médio prazo capaz de considerar o risco de déficit em sua formulação. Para o controle de risco de déficit, é proposta a utilização da métrica de risco conhecida por CVaR (Conditional Value at Risk), por se caracterizar como uma métrica de risco coerente, além de poder ser implementada por meio de um conjunto de restrições lineares. / The energetic operation planning of the Brazilian interconnected system is performed by a chain of computational models for the system optimization and simulation. However, the deficit risk, an important energy security indicator for the electric sector, is treated as an output variable on the computational models. In the medium-term of the energetic planning is used the software NEWAVE, which uses equivalent systems on aggregated representation. This work proposes the implementation of a linear optimization model for the medium-term of the energetic planning able to consider the deficit risk in its own formulation. To control the deficit risk is proposed the use of the risk metric known as CVaR (Conditional Value at Risk), because it is characterized as a coherent risk metric, and can be implemented through a set of linear constraints.
|
159 |
Riscos de mercado na comercialização de energia: uma abordagem via complementação energética e gestão de portfólio de projetos, considerando a mitigação de incertezas da geração eólica. / Market risks in energy trading: an approach via energy management and project portfolio completion, considering the mitigation of uncertainties of wind generation.Andre Takeshi Tamashiro 15 May 2014 (has links)
No setor elétrico brasileiro as fontes renováveis de energia têm se tornadas atrativas do ponto de vista do investidor devido não só aos incentivos de política de governo, como também por exibirem uma elevada competitividade, além da sinergia proveniente da complementariedade energética entre essas fontes. Por outro lado,a tomada de decisão de investimento em empreendimentos de geração tem se caracterizado cada vez mais como um processo complexo e arriscado, devido à potencial perda financeira decorrente de um fluxo de caixa bastante irregular, fundamentalmente em função da interação no mercado de curto prazo. Este trabalho descreve o problema e a solução para um investidor caracterizado por sua aversão ou apetite ao risco otimizando os recursos com restrição de risco (VaR, CVaR mesclado com conceito do CFaR). Os resultados mostram que para parâmetros usuais que condicionam o risco financeiro, tais como,(i) a taxa de investimento, (ii) preço de contrato de venda e (iii) custo de investimento, o modelo busca a solução para a melhor alocação de investimento, representada por um portfólio ótimo de projetos, respeitando limites fixados para o montante a ser investido e o risco financeiro correspondente. De forma geral, a conceituação da medida de aversão a risco e sua implementação no modelo de otimização desenvolvido permitiram obter resultados robustos para o tipo de problema abordado e a diversidade de situações analisada a partir de estudos de caso. / Brazilian electricity sector in renewable energy sources has become attractive from the investor point of view not only because of government policy incentives, but also to exhibit a high competitiveness beyond energy synergy from the complementarity between energy sources. However, the decision making of investments in generation capacity has come to characterize a complex and risky process, because of the potential financial loss resulting from a highly irregular cash flow, mainly due to the interaction in the short-term market. This paper describes the problem and solution for the risk averse investor optimizing financial resources constrained risk (VaR, CVaR merged with the concept CFaR). The results show that for the risk factors, as for instance, investment rate, sales price and cost of investment contract, the model responds within the limits of tax risks. In general, the concept of measure of risk aversion and its implementation in the optimization model developed is shown robust to the type of problem addressed.
|
160 |
Programação linear com controle de risco para o planejamento da operação do SIN / Linear programming with risk control for the operation planning of SINBertho Junior, Rui 08 March 2013 (has links)
O planejamento da operação energética do sistema interligado nacional brasileiro é realizado por uma cadeia de modelos computacionais de otimização e simulação da operação. Entretanto, o risco de déficit, um importante indicador de segurança energética no setor elétrico, é tratado como uma variável de saída dos modelos computacionais. No planejamento de médio prazo é utilizado o software NEWAVE, que utiliza uma representação agregada em subsistemas equivalentes. Este trabalho propõe a implementação de um modelo de otimização linear para o planejamento da operação de médio prazo capaz de considerar o risco de déficit em sua formulação. Para o controle de risco de déficit, é proposta a utilização da métrica de risco conhecida por CVaR (Conditional Value at Risk), por se caracterizar como uma métrica de risco coerente, além de poder ser implementada por meio de um conjunto de restrições lineares. / The energetic operation planning of the Brazilian interconnected system is performed by a chain of computational models for the system optimization and simulation. However, the deficit risk, an important energy security indicator for the electric sector, is treated as an output variable on the computational models. In the medium-term of the energetic planning is used the software NEWAVE, which uses equivalent systems on aggregated representation. This work proposes the implementation of a linear optimization model for the medium-term of the energetic planning able to consider the deficit risk in its own formulation. To control the deficit risk is proposed the use of the risk metric known as CVaR (Conditional Value at Risk), because it is characterized as a coherent risk metric, and can be implemented through a set of linear constraints.
|
Page generated in 0.0292 seconds