Spelling suggestions: "subject:"[een] MAGNETIC NANOPARTICLE"" "subject:"[enn] MAGNETIC NANOPARTICLE""
21 |
Photopolymerization Synthesis of Magnetic Nanoparticle Embedded Nanogels for Targeted Biotherapeutic DeliveryDenmark, Daniel Jonwal 21 June 2017 (has links)
Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for stimulus upon alternating magnetic field heating. Although more traditional methods, such as emulsion polymerization, have been used to realize these composite devices, the synthesis is problematic. Poisonous surfactants that are necessary to prevent agglomeration must be removed from the finished polymer, increasing the time and cost of the process. This study seeks to further explore non-toxic, biocompatible, non-residual, photochemical methods of creating stimuli responsive nanogels to advance the targeted biotherapeutic delivery field. Ultraviolet photopolymerization promises to be more efficient, while ensuring safety by using only biocompatible substances. The reactants selected for nanogel fabrication were N-isopropylacrylamide as monomer, methylene bisacrylamide as cross-linker, and Irgacure 2959 as ultraviolet photo-initiator. The superparamagnetic nanoparticles for encapsulation were approximately 10 nm in diameter and composed of magnetite to enable remote delivery and enhanced triggered release properties. Early investigations into the interactions of the polymer and nanoparticles employ a pioneering experimental setup, which allows for coincident turbidimetry and alternating magnetic field heating of an aqueous solution containing both materials. Herein, a low-cost, scalable, and rapid, custom ultraviolet photo-reactor with in-situ, spectroscopic monitoring system is used to observe the synthesis as the sample undergoes photopolymerization. This method also allows in-situ encapsulation of the magnetic nanoparticles simplifying the process. Size characterization of the resulting nanogels was performed by Transmission Electron Microscopy revealing size-tunable nanogel spheres between 50 and 800 nm by varying the ratio and concentration of the reactants. Nano-Tracking Analysis indicates that the nanogels exhibit minimal agglomeration as well as provides a temperature-dependent particle size distribution. Optical characterization utilized Fourier Transform Infrared and Ultraviolet Spectroscopy to confirm successful polymerization. When samples of the nanogels encapsulating magnetic nanoparticles were subjected to an alternating magnetic field a temperature increase was observed indicating that triggered release is possible. Furthermore, a model, based on linear response theory that innovatively utilizes size distribution data, is presented to explain alternating magnetic field heating results. The results presented here will advance targeted biotherapeutic delivery and have a wide range of applications in medical sciences like oncology, gene delivery, cardiology and endocrinology.
|
22 |
Relaxation Effects in Magnetic Nanoparticle Physics: MPI and MPS ApplicationsWu, Yong 23 August 2013 (has links)
No description available.
|
23 |
Designing immobilized catalysts for chemical transformations: new platforms to tune the accessibility of active sitesLong, Wei 03 July 2012 (has links)
Chemical catalysts are divided into two traditional categories: homogeneous and heterogeneous catalysts. Although homogeneous (molecular) catalysts tend to have high activity and selectivity, their wide application is hampered by the difficulties in catalyst separation. In contrast, the vast majority of industrial scale catalysts are heterogeneous catalysts based on solid materials. Immobilized catalysts, combining the advantages of homogeneous and heterogeneous catalysts, have developed into an important field in catalysis research. This dissertation presents synthesis, characterization and evaluation of several novel immobilized catalysts. In the first part, MNP supported aluminum isoproxide was developed for ROP of Є-caprolactone to achieve facile magnetic separation of catalysts from polymerization system and reduce toxic metal residues in the poly(caprolactone) product. Chapter 3 presents a silica coated MNP supported DMAP catalyst that was synthesized and displayed good activity and regio-selectivity in epoxide ring opening reactions. In Chapter 4, hybrid sulfonic acid catalysts based on polymer brush materials have been developed. The unique polymer brush architecture permits high catalyst loadings as well as easy accessibility of the active sites to be achieved in this catalytic system. In Chapter 5, aminopolymer-silica composite supported Pd catalysts with good activity and selectivity were developed for the selective hydrogenation of alkynes. In this case, the aminopolymer composite works as a stabilizer for palladium nanoparticles, as well as a modifier to tune the catalyst selectivity. All in all, the general theme of the thesis is developing new immobilized catalysts with improved activity/selectivity as well as easy separation via rational catalyst design.
|
24 |
Développement de stratégies de biofonctionnalisation de surface de nano-objets pour des applications biologiques / Development of nano-objects surface biofunctionalization strategies for biological applicationsAdumeau, Laurent 09 December 2015 (has links)
Cette étude porte sur le développement de nanoparticules pour différentes applicationsbiologiques. Trois systèmes de nanoparticules ont été mis au point : des clusters de nanoparticulesmagnétiques pour l’extraction par magnétophorèse d’objets biologiques, des agents de contrastemultimodaux (IRM, fluorescence dans le proche infrarouge) pour le diagnostic de l’athérosclérose etdes nanoparticules de silice fluorescentes doublement marquées pour la détection de tumeurs in vivo.Au cours de cette étude, une stratégie de greffage de surface de silice par des macromolécules depoly(oxyde d’éthylène) (PEG) permettant d’atteindre de hautes densités de greffage. Cette PEGylationpermet, d’annuler les interactions non spécifiques dans le cadre de l’extraction magnétique rendantainsi ce système plus efficace, et de conférer aux nanoparticules des propriétés de furtivité vis-à-vis dusystème immunitaire dans le cadre du marquage de tumeurs. Le contrôle du nombre de biomoléculesgreffées régiosélectivement sur les nanoparticules (Annexine A5, ou fragments d’anticorps) ainsi quel’étude des interactions biomoléculaires par des techniques de biophysique (SPR, QCM-D) ont permisd’optimiser la propriété de reconnaissance des nano-objets pour leurs cible respective. Enfin, les nanoobjetsont été évalués dans le cadre de leur application. / The aim of this study was the design of nanoparticles for three different biologicalapplications: magnetic nanoparticles cluster for magnetic extraction of biological materials,multimodal contrast agents (MRI and near infrared fluorescence imaging) for atherosclerosisdiagnosis, and fluorescent silica nanoparticles with two different dyes for in vitro and in vivo tumorlabeling. One part of the project dealt with the developement of a new grafting method ofpoly(ethylene oxide) macromolecules onto nanoparticle’s silica surfaces (PEGylation) in order toobtain a high grafting densities. The obtained results have shown that this PEGylation reduces the nonspecificprotein adsorption allowing a better extraction and sorting efficiency, and also permitsnanoparticles to escape the surveillance of the immune system for in vivo tumor labeling. Therefore,the biomolecular recognition of the nanoparticles has been optimized by controlling the number ofconjugated biomolecules and by studying this biomolecular recognition using biophysical methods(SPR, QCM-D). Finally, the different nano-objects were evaluated in the context of their respectiveapplication.
|
25 |
Influence de composés perfluoroalkylés sur des films minces de phospholipides à une interface gaz/eau / Influence of perfluoroalkyled compounds on thin films of phospholipids at the gas/water interfaceNguyen, Phuc Nghia 18 April 2013 (has links)
Les fluorocarbures ont un fort potentiel en médecine. Cependant, et en dépit du fait que certaines formulations employant des fluorocarbures sont utilisées en clinique, il n’existe que relativement peu d’études visant à déterminer les interactions entre un fluorocarbure et une membrane de phospholipides. Notre étude concentre à l’interface fluorocarbure/phospholipide, qui représente d’une part un modèle simplifié du surfactant pulmonaire natif dont le composant majoritaire est la dipalmitoylphosphatiylcholine (DPPC), et d’autre part la paroi de microbulles développées comme nouveaux agents théranostiques.Tout d’abord, nous montrons que les fluorocarbures abaissent considérablement la tension interfaciale d’équilibre d’une série de phospholipides et accélèrent fortement leur adsorption. Nous montrons que des oscillations périodiques appliquées à la bulle induisent une transition du film de DPPC vers un état d’organisation plus dense. L’application d’oscillations périodiques permet aussi à la DPPC d’expulser du film interfacial une protéine, l’albumine, dont la présence est souvent liée aux troubles dus au mauvais fonctionnement du surfactant pulmonaire. L’effet des fluorocarbures, qui accélère considérablement l’expulsion de l’albumine par la DPPC, est également étudié. D’autre part, nous avons obtenu des microbulles exceptionnellement stables grâce à une série homologue de phosphates perfluoroalkylés. Nous avons également réussi à former des microbulles couvertes par des nanoparticules magnétiques, tout en gardant les propriétés échogènes des bulles. De telles microbulles offrent un potentiel comme des agents de contraste bimodaux pour l’IRM et l’échosonographie. / Fluorocarbons have a great potential in medicine. However, and despite the fact that some formulations using fluorocarbons are used clinically, only a few studies are reported that aim to determining the interactions between a fluorocarbon and a membrane of phospholipids. Our work concentrated on the fluorocarbon/phospholipid interface, which represents, on one hand, a simplified model of the lung surfactant, the major component of which is dipalmitoylphosphatiylcholine (DPPC), and on the other hand, the shell of microbubbles developed as new theranostic agents. In a first part, we show that fluorocarbons significantly reduce the equilibrium interfacial tension of a series of phospholipids and greatly accelerate their adsorption rate. We also show that periodical oscillations applied to the bubble induce a transition of DPPC film to state with a denser organization. The application of periodical oscillations also allows DPPC to expel from the interfacial film a protein, albumin, whose presence is often associated with disorders caused by dysfunction of the lung surfactant. The impact of fluorocarbons, which considerably accelerate the expulsion from the interfacial film of albumin, is also studied. In a second part, we have obtained exceptionally stable microbubbles with a homologous series of perfluoroalkylated phosphates. We were also able to form microbubbles covered by magnetic nanoparticles, while preserving the echogenicity of the bubbles. Such microbubbles offer a potential as bimodal contrast agents for MRI and echography.
|
Page generated in 0.0533 seconds