Spelling suggestions: "subject:"[een] MATERIAL CHARACTERIZATION"" "subject:"[enn] MATERIAL CHARACTERIZATION""
61 |
Semiconductor Photocatalysts For The Detoxification Of Water PollutantsHanumanth Rao, C January 2000 (has links)
Water pollution is a major concern in vast countries such as India and other developing nations. Several methods of water purification have been practiced since many decades, Semiconductor photocatalysis is a promising technique, for photodegradation of various hazardous chemicals that are encountered in waste waters. The great significance of this technique is that, it can degrade (detoxify) various complex organic chemicals, which has not been addressed by several other methods of purification. This unique advantage made this field of research to attract many investigators particularly in latter eighties and after.
This thesis incorporates the studies on the various semiconductor photocatalysts that have been employed for the detoxification purposes. The fundamental principles involved in the photoelectrochemistry, reactions at the interface (solid - liquid or solid - gas) and photocatalytic reactions on fine particles are briefed. General nature and size quantization in semiconductor particles, photocatalytically active semiconductors, TiCh and ABO3 systems, chemical systems and modifications for solar energy conversions are brought out in the introduction chapter besides giving brief description about photocatalytic mineralization of water pollutants with mechanism involved, formation of reactive species and the factors influencing photomineralization reactions. Scope of the present work is given at the end of the first chapter.
Second chapter deals with the materials used for the preparation of photocatalyst, preparative techniques, methods of analysis, instruments employed for the photodegradation experiments and a brief description of material characterization methods such as X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential thermal analysis, optical absorption spectro photometry, Electron paramagnetic resonance (EPR), and gas chromatograph - mass spectroscopy (GC - MS). Various preparative routes such as wet chemical and hydrothermal methods for obtaining TiO2 (both rutile and anatase forms), BaTiOs and SrTiO3 fine particles and the chemical analysis of their constituents have been described in brief.
Third chapter presents the results of materials characterization. T1O2 (rutile and anatase), BaTiO3 and SrTiO3 have been characterized separately using various techniques. Different routes of obtaining the photocatalyst fine particles, heat treatment at various temperature ranges, experimental procedures and the results of characterization are brought out in this chapter.
Fourth and fifth chapters present the details of degradation studies carried out on the photomineralization of chlorophenol, trichloroethylene and formaldehyde. Studies include photodegradation of the pollutants with different catalysts varying experimental conditions to check the effects of change in
concentration of pollutants, oxidizer, pH, surface hydroxylation, etc. The most favorable conditions for the complete mineralization of the
pollutants have been studied. In case of TiO2, anatase form has shown greater photoactivity when compared to rutile and complete mineralization of chlorophenols has been achieved at low pollutant
concentrations, neutral pH, with H2O2 and UV illumination. Retarding effects of surface hydroxylation and the formation of peroxotitanium species during photodegradation have been presented. TCE and HCHO degradation with BaTiO3/SrTiO3 has been studied. Photocatalyst heat-treated at 1100°G-1300°C is found to be highly active in combination with H2O2 as electron scavenger. HCHO is not getting degraded to its completeness in aqueous conditions owing to the strong competition in surface adsorption posed by H2O molecules. Vapour-solid phase reaction however gave good results in the detoxification of HCHO via disproportionation. Summary and conclusions are given at the end of the thesis.
|
62 |
Tailoring the magnetic anisotropy in amorphous FeZr-based thin films on flexible and solid substratesMenniti, Matteo January 2018 (has links)
In this thesis the magnetic properties of novel amorphous magnetic materials grown on a flexible substrate of polyethylene naphthalate and a silicon wafer have been analyzed and characterized. The analyzed films are two films of amorphous Cobalt-Iron-Zirconium(Co36Fe53Zr11 & Co37Fe55Zr8) grown on the flexible substrate and two films of amorphous (Fe89Zr11) doped with boron (B). The B is implanted in a lattice of rings with inner diameter of 10 μm and outer diameter of 20 μm and with the distance between the center of the rings of either 50 μm or 25 μm. The composition in the doped region is Fe80Zr10B10. Various magneto-optical Kerr effect(MOKE) magnetometers are used to measure hysteresis loops of the samples and a superconducting quantum interference device (SQUID) is used to find the volume magnetization of the flexible samples. To measure the anisotropy in the flexible films a series of sample holders has been developed to measure various amount of stress using the same sample in magneto-optical magnetometers. The stress induced uniaxial anisotropy is found by measuring hysteresis loops of the flexible samples while bending them with different curvatures. The induced anisotropy is related to the magnetostriction and the magnetostriction constants is estimated for the two flexible samples by assuming values for Young’s modulus and Poisson’s ratio. The estimated values for the magnetostriction constant are found to vary with the amount of Zr and to be in the correct order of magnitude for magnetic films. The implanted B rings with the short distance of 25 μm between the center showed to have some interaction between the rings. This conclusion is drawn after analyzing first order reversal curves of the samples and looking at the domains under a MOKE-microscope. At very low temperatures the (unimplanted) FeZr matrix is ferromagnetic and seem to have an anti-ferromagnetic coupling with the B rings. At room temperature the rings are still ferromagnetic and they couple to each other.
|
63 |
Caracterização de materiais compostos por ultra-som. / Ultrasonic characterization of composite materials.Daniel Verga Boeri 19 April 2006 (has links)
Este trabalho apresenta duas técnicas de ensaios não-destrutivos por ultra-som realizados em um tanque com água para determinar as constantes elásticas de materiais compostos de fibra de vidro/epóxi. A primeira técnica é a transmissão direta utilizando um par de transdutores. A segunda é a técnica de pulso-eco, utilizando um único transdutor. A água do tanque atua como um acoplante para transferir a energia mecânica do transdutor para a amostra. Como o transdutor não fica em contato direto com a amostra, pode-se garantir um acoplamento constante. O sistema de medição dota de um dispositivo que permite medir a velocidade da onda elástica sob diferentes ângulos de incidência, através da rotação manual da amostra. Devido ao fenômeno de conversão de modos com incidência oblíqua na interface amostra-água, ensaios por ultra-som em tanques com água fornecem as informações necessárias para o cálculo das constantes elásticas em amostras de materiais anisotrópicos, numa dada direção, a partir das medições das velocidades longitudinal e de cisalhamento. Numa dada direção de propagação em um meio anisotrópico, existem três ondas elásticas distintas: uma longitudinal e duas de cisalhamento. Se as constantes elásticas do material são conhecidas, é possível obter as três velocidades em uma dada direção bastando resolver a equação de Christoffel. Invertendo a equação de Christoffel, obtém-se as constantes elásticas a partir das velocidades medidas em uma dada direção. Os experimentos são realizados com amostras de fibra de vidro/epóxi unidirecionais e bidirecionais, utilizando transdutores com freqüências de 0,5 MHz, 1 MHz e 2,25 MHz. Os resultados experimentais obtidos utilizando ambas as técnicas são comparados com um modelo denominado Regra das Misturas e com resultados da literatura. / In this work, two ultrasonic non destructive techniques were implemented in a water tank and used to determine the elastic constants of glass-epoxy composites samples. The first is the through-transmission technique implemented with a pair of ultrasonic transducers. The second is the back-reflection technique that uses a single transducer in pulse-eco mode. The water acts as a couplant and transfers the mechanical energy from the transducer to the sample. As the transducer is not in direct contact with the sample, we can guarantee a good coupling with the immersion technique. With the system device, it is possible to measure the velocities of the elastic waves in different angles by manually rotating the sample. Due to wave mode conversion phenomenon at the sample-water interface with oblique incidence, ultrasonic immersion testing provides information to calculate the elastic constants of the specimen by measuring longitudinal and shear wave speeds. There are three different modes of waves, one longitudinal and two shear waves, for any given direction of propagation in an anisotropic medium. If the elastic constants of a medium are known, it is possible to obtain the three wave speeds in particular propagations directions by solving the Christoffel equation. Inverting the Christoffel equation, it is possible to obtain the elastic constants from the measured wave speed in several specific directions of the anisotropic material. Measurements were carried out on unidirectional and bidirectional glass-epoxy composite samples, using transducers with central frequency of 0.5 MHz, 1 MHz, and 2.25 MHz. The experimental results obtained with both techniques are compared with a model denominated Rule of Mixture estimation and with the literature.
|
64 |
Modelamento inverso e otimização de forma de um absorvedor de impacto / Inverse modeling and shape optimization of an energy absorberMartins, Daniel Leonardo 07 April 2007 (has links)
Orientador: Marco Lucio Bittencourt / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-09T12:36:20Z (GMT). No. of bitstreams: 1
Martins_DanielLeonardo_M.pdf: 3435063 bytes, checksum: 5e1595f9983245a24712a596e4b1f0a1 (MD5)
Previous issue date: 2007 / Resumo: Este trabalho apresenta uma metodologia de otimização de forma aplicada a estruturas submetidas a cargas de impacto, de modo a aumentar sua capacidade de absorção de energia de impacto. Para isso, é necessário conhecer as propriedades mecânicas dos materiais empregados em tais estruturas, as quais são obtidas através de uma metodologia de abordagem dupla experimental- otimização. São obtidos os parâmetros ótimos das leis constitutivas de Cowper-Symonds e Johnson-Cook para materiais sensíveis à taxa de deformação que melhor se ajustam aos respectivos dados experimentais. Finalmente, esses parâmetros são utilizados na análise de uma estrutura complexa, a qual tem sua capacidade de absorção de energia de impacto melhorada utilizando a Metodologia de Resposta da Superfície / Abstract: This work presents a shape optimization methodology applied to structures submitted to impact loads in order to improve their crashworthiness. To this end, it is necessary to know the structural material properties, which were obtained using a dual experimental-optimization methodology. Optimum parameters are obtained for the Cowper-Symonds and Johnson-Cook strain rate sensitive constitutive laws which best fit the material experimental data. These parameters were then used in the analysis of a complex structure, which is crashworthy optimized using a Response Surface Methodology / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
|
65 |
Large Strain Plastic Deformation of Traditionally Processed and Additively Manufactured Aerospace MetalsHoover, Luke Daniel 09 August 2021 (has links)
No description available.
|
66 |
Caractérisation optique non linéaire dans le visible, l’UV et l’IR en régime picoseconde. : cas des solvants liquides les plus utilisés, du niobate de lithium et des nano-feuilles de graphène / Visible, UV and IR nonlinear optical characterization in the picosecond regime. : case of the most commonly used solvents, lithium niobate and graphene quantum dots.Wang, Hongzhen 16 May 2019 (has links)
Cette étude concerne la caractérisation optique non linéaire (NL) principalement d’ordre 3 dans le visible, l’UV et l’IR en régime picoseconde de différents matériaux tels que certains solvants, le niobate de lithium et les nano-feuilles de graphène. Nous présentons d’abord les expressions des susceptibilités NL. Nous décrivons ensuite la technique de caractérisation Z-scan et ses variantes. Nous présentons une nouvelle méthode qui combine les avantages de Z-scan avec ceux de la microscopie en champ sombre. Nous montrons que cette technique d’imagerie, nommée DFZscan (Dark Field Z-scan), peut mesurer les coefficients de réfraction NL en présence d'une forte absorption NL. Les résultats expérimentaux montrent une importante amélioration de la sensibilité. Finalement, nous comparons les réponses NL des solvants les plus utilisés, dont l’eau qui possède la réfraction NL la plus faible. Ce liquide est utilisé pour caractériser la réponse NL d’une suspension de points quantiques de graphène. Grâce à un modèle simple, nous estimons l'indice de réfraction et d’absorption NL d'une nanofeuille de graphène monocouche. Nous étudions également les non linéarités d’ordres supérieurs dans les matériaux liquides (toluène) et solides (LiNbO3) en vue d’applications potentielles pour la génération de la deuxième harmonique et des modulateurs de guides d'ondes. Ces coefficients peuvent intéresser une grande communauté de chercheurs dans des domaines aussi variés que la filamentation, les solitons, le traitement tout optique du signal et les réseaux de télécommunications. / This study concerns the nonlinear (NL) optical characterization mainly of order 3 in the visible, UV and IR in the picosecond regime of different materials such as solvents, lithium niobate and graphene nanosheets. We first present the expressions of NL susceptibilities. We then describe the Z-scan characterization technique and its variants. We present a new method that combines the advantages of Z-scan with those of dark field microscopy. We show that this imaging technique, called DFZ-scan (Dark Field Z-scan), can measure NL refractive coefficients in the presence of high NL absorption. The experimental results show a significant improvement in the sensitivity. Finally, we compare the NL responses of the most commonly used solvents, including water with the lowest NL refraction. This liquid is used to characterize the NL response of a suspension of graphene quantum dots. Using a simple model, we estimate the refractive index and absorption index NL of a single-layer graphene nanosheet. We also studied higher order non-linearities in liquid (toluene) and solid (LiNbO3) materials for potential applications in second harmonic generation and waveguide modulators. These coefficients can be of interest to a large community of researchers in fields as diverse as filamentation, soliton, all-optical signal processing and telecommunications networks.
|
67 |
Fotoluminescencija i Ramanova spektroskopija specifičnih kompleksnih organometalnih jedinjenja na bazi cinka, kobalta i bakra pogodnih za primenu u organskim svetlećim diodama / Photoluminescence and Raman spectroscopy of specific complexcompounds based on zinc, cobalt and copper suitable for application inorganic light emitting diodesJelić Miodrag 30 May 2017 (has links)
<p>U okviru doktorske disertacije predstavljene su elektronska i fononska struktura odabranih organometalnih materijala koji u svom sastavu imaju metale cink, kobalt ili bakar i organsko jedinjenje piridoksalaminogvanidin (PLAG). Predstavljene su realizacija i karakteristike organske svetleće diode zasnovane na najboljem od ispitivanih materijala. Urađena je detaljna analiza fotoluminescentnih spektara i njihovo razlaganje na proste komponente koristeći Lorencov model. Izvršeno je poređenje sa od ranije poznatim materijalom koji pokazuje visok stepen luminescencije. S obzirom da istraživanja vezana za organske svetleće diode uzimaju sve veći zamah i da ove diode postaju sve prisutnije u industrijskoj serijskoj proizvodnji, napravljena je detaljna analiza ove tehnologije i mehanizama koji se kriju iza nje. Urađeno je podrobno istraživanje kako na nivou elektrona u datim supstancama, tako i na nivou sloja organske svetleće diode. Na kraju je izvršena analiza rada diode sa integrisanim slojem sa materijalom koji u sebi sadrži cink i PLAG.</p> / <p>In this thesis electronic and phonon structure of specific organometallic<br />materials which have zinc, cobalt, copper metals and organic compound<br />pyridoxalaminoguanidin are presented. Implementation and characteristics of<br />organic light emitting diode based on the best material among examined<br />ones are also showed up. Detailed analysis of photoluminescence spectra<br />was done and its decomposition to its elementar components using<br />Lorentzian multipeak method. Comparison to well-known material that shows<br />high level of luminescence was implemented. In accordance to the fact that<br />research of organic light emitting diodes expands and that these diodes start<br />to be more present in industrial serial production, detailed analysis of this<br />technology and mechanisms behind it are made. Thorough research was<br />done both on electron level in these substances and organic light emitting<br />diode layer level. Finally, analysis of diode operation with integrated layer<br />made of material which includes zinc and pyridoxalaminoguanidin compound<br />is implemented.</p>
|
68 |
DESIGN AND DEVELOPMENT OF A SEISMIC ISOLATIONSYSTEM FOR COMMERCIAL STORAGE RACKSMichael, Robert Joseph 23 August 2013 (has links)
No description available.
|
69 |
Strategies for the Characterization and Virtual Testing of SLM 316L Stainless SteelHendrickson, Michael Paul 02 August 2023 (has links)
The selective laser melting (SLM) process allows for the control of unique part form and function characteristics not achievable with conventional manufacturing methods and has thus gained interest in several industries such as the aerospace and biomedical fields. The fabrication processing parameters selected to manufacture a given part influence the created material microstructure and the final mechanical performance of the part. Understanding the process-structure and structure-performance relationships is very important for the design and quality assurance of SLM parts. Image based analysis methods are commonly used to characterize material microstructures, but are very time consuming, traditionally requiring manual segmentation of imaged features. Two Python-based image analysis tools are developed here to automate the instance segmentation of manufacturing defects and subgranular cell features commonly found in SLM 316L stainless steel (SS) for quantitative analysis. A custom trained mask region-based convolution neural network (Mask R-CNN) model is used to segment cell features from scanning electron microscopy (SEM) images with an instance segmentation accuracy nearly identical to that of a human researcher, but about four orders of magnitude faster. The defect segmentation tool uses techniques from the OpenCV Python library to identify and segment defect instances from optical images. A melt pool structure generation tool is also developed to create custom melt-pool geometries based on a few user inputs with the ability to create functionally graded structures for use in a virtual testing framework. This tool allows for the study of complex melt-pool geometries and graded structures commonly seen in SLM parts and is applied to three finite element analyses to investigate the effects of different melt-pool geometries on part stress concentrations. / Master of Science / Recent advancements in additive manufacturing (AM) processes like the selective laser melting (SLM) process are revolutionizing the way many products are manufactured. The geometric form and material microstructure of SLM parts can be controlled by manufacturing settings, referred to as fabrication processing parameters, in ways not previously possible via conventional manufacturing techniques such as machining and casting. The improved geometric control of SLM parts has enabled more complex part geometries as well as significant manufacturing cost savings for some parts. With improved control over the material microstructure, the mechanical performance of SLM parts can be finely tailored and optimized for a particular application. Complex functionally graded materials (FGM) can also easily be created with the SLM process by varying the fabrication processing parameters spatially within the manufactured part to improve mechanical performance for a desired application. The added control offered by the SLM process has created a need for understanding how changes in the fabrication processing parameters affect the material structure, and in turn, how the produced structure affects the mechanical properties of the part. This study presents three different tools developed for the automated characterization of SLM 316L stainless steel (SS) material structures and the generation of realistic material structures for numerical simulation of mechanical performance. A defect content tool is presented to automatically identify and create binary segmentations of defects in SLM parts, consisting of small air pockets within the volume of the parts, from digital optical images. A machine learning based instance segmentation tool is also trained on a custom data set and used to measure the size of nanoscale cell features unique to 316L (SS) and some other metal alloys processed with SLM from scanning electron microscopy (SEM) images. Both these tools automate the laborious process of segmenting individual objects of interest from hundreds or thousands of images and are shown to have an accuracy very close to that of manually produced results from a human. The results are also used to analyze three different samples produced with different fabrication processing parameters which showed similar process-structure relationships with other studies. The SLM structure generation tool is developed to create melt pool structures similar to those seen in SLM parts from the successive melting and solidification of material from the laser scanning path. This structural feature is unique to AM processes such as SLM, and the example test cases investigated in this study shows that changes in the melt pool structure geometry have a measurable effect, slightly above 10% difference, on the stress and strain response of the material when a tensile load is applied. The melt pool structure generation tool can create complex geometries capable of varying spatially to create FGMs from a few user inputs, and when applied to existing simulation methods for SLM parts, offers improved estimates for the mechanical response of SLM parts.
|
70 |
Extension Of Stress-Based Finite Element Model Using Resilient Modulus Material Characterization To Develop A Theoretical Framework for Realistic Response Modeling of Flexible Pavements on Cohesive Subgrades.Parris, Kadri 20 October 2015 (has links)
No description available.
|
Page generated in 0.0275 seconds