• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 17
  • 11
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 182
  • 182
  • 132
  • 69
  • 47
  • 41
  • 39
  • 37
  • 33
  • 28
  • 25
  • 22
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

MICROFLUIDIC DEVICES FOR NEMATODE-BASED BEHAVIOURAL ASSAYS USING ELECTROTAXIS

Rezai, Pouya 04 1900 (has links)
<p>Small nematode model organisms such as <em>Caenorhabditis elegans</em> are widely used in the fields of neurobiology, toxicology, drug discovery, etc. They are advantageous due to their fully characterized genomic and cellular system. Traditional screening methods involve the exposure of animals to chemicals/drugs inside multiwell-plates while its effects on growth, movement and other cellular/sub-cellular processes are monitored by visual inspection. Yet, these methods are time-consuming, low-throughput, expensive, tedious, difficult to control, hard to modulate instantaneously, prone to subjectivity and not suitable for movement-based behavioural assays. Hence, a method to induce and to quantify movement on-demand in a rapid, sensitive, precise and reversible manner would greatly facilitate biological studies. In this thesis, microfluidic engineering approaches have been utilized in nematode-based assays due to their potential to obtain high precision measurements in a low-cost, rapid and automated manner. Movement response of worms to a diverse range of electric signals has been quantitatively characterized. DC and pulse-DC electric fields have been shown to stimulate worms’ swimming towards the negative electrode inside a microchannel (electrotaxis). AC electric fields were used to inhibit movement on-demand. Animals’ movement has been characterized in terms of speed and range of motion, body-bend frequency and turning time. Electrotaxis was shown to be mediated by neuronal activities and correlations between animal’s behaviour and neuronal signalling has also been demonstrated. Using this basic understanding, multiple microfluidic components such as position sensors and electric immobilizers have been developed. Electrotaxis has then been applied as a technique to sort worms in accordance to their size/age and phenotype as well as to perform drug screening at a single-animal level. Integration of the techniques and components developed during this research is expected to have a significant impact on the development of an integrated microfluidic platform for high throughput automated behavioural screening of nematodes with applications in drug discovery, toxicology, neurobiology and genetics.</p> / Doctor of Philosophy (PhD)
182

Vision Beyond Optics: Standardization, Evaluation and Innovation for Fluorescence Microscopy in Life Sciences

Huisman, Maximiliaan 01 April 2019 (has links)
Fluorescence microscopy is an essential tool in biomedical sciences that allows specific molecules to be visualized in the complex and crowded environment of cells. The continuous introduction of new imaging techniques makes microscopes more powerful and versatile, but there is more than meets the eye. In addition to develop- ing new methods, we can work towards getting the most out of existing data and technologies. By harnessing unused potential, this work aims to increase the richness, reliability, and power of fluorescence microscopy data in three key ways: through standardization, evaluation and innovation. A universal standard makes it easier to assess, compare and analyze imaging data – from the level of a single laboratory to the broader life sciences community. We propose a data-standard for fluorescence microscopy that can increase the confidence in experimental results, facilitate the exchange of data, and maximize compatibility with current and future data analysis techniques. Cutting-edge imaging technologies often rely on sophisticated hardware and multi-layered algorithms for reconstruction and analysis. Consequently, the trustworthiness of new methods can be difficult to assess. To evaluate the reliability and limitations of complex methods, quantitative analyses – such as the one present here for the 3D SPEED method – are paramount. The limited resolution of optical microscopes prevents direct observation of macro- molecules like DNA and RNA. We present a multi-color, achromatic, cryogenic fluorescence microscope that has the potential to produce multi-color images with sub-nanometer precision. This innovation would move fluorescence imaging beyond the limitations of optics and into the world of molecular resolution.

Page generated in 0.0512 seconds