• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 17
  • 11
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 186
  • 186
  • 136
  • 71
  • 48
  • 41
  • 40
  • 38
  • 33
  • 28
  • 27
  • 23
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

High Speed, Micron Precision Scanning Technology for 3D Printing Applications

Emord, Nicholas 01 January 2018 (has links)
Modern 3D printing technology is becoming a more viable option for use in industrial manufacturing. As the speed and precision of rapid prototyping technology improves, so too must the 3D scanning and verification technology. Current 3D scanning technology (such as CT Scanners) produce the resolution needed for micron precision inspection. However, the method lacks in speed. Some scans can be multiple gigabytes in size taking several minutes to acquire and process. Especially in high volume manufacturing of 3D printed parts, such delays prohibit the widespread adaptation of 3D scanning technology for quality control. The limiting factors of current technology boil down to computational and processing power along with available sensor resolution and operational frequency. Realizing a 3D scanning system that produces micron precision results within a single minute promises to revolutionize the quality control industry. The specific 3D scanning method considered in this thesis utilizes a line profile triangulation sensor with high operational frequency, and a high-precision mechanical actuation apparatus for controlling the scan. By syncing the operational frequency of the sensor to the actuation velocity of the apparatus, a 3D point cloud is rapidly acquired. Processing of the data is then performed using MATLAB on contemporary computing hardware, which includes proper point cloud formatting and implementation of the Iterative Closest Point (ICP) algorithm for point cloud stitching. Theoretical and physical experiments are performed to demonstrate the validity of the method. The prototyped system is shown to produce multiple loosely-registered micron precision point clouds of a 3D printed object that are then stitched together to form a full point cloud representative of the original part. This prototype produces micron precision results in approximately 130 seconds, but the experiments illuminate upon the additional investments by which this time could be further reduced to approach the revolutionizing one-minute milestone.
152

Advanced methods for GLAD thin films

Kupsta, Martin 06 1900 (has links)
Thin films are produced from layers of materials ranging from nanometres to micrometres in height. They are increasingly common and are being used in integrated circuit design, optical coatings, protective coatings, and environmental sensing. Thin films can be fabricated using a variety of methods involving chemical reactions or physical transport of matter. Glancing angle deposition (GLAD) thin films are produced using physical vapour deposition techniques under high vacuum conditions where exploitation of the geometric conditions between the source and the substrate causes enhanced atomic self shadowing to produce structured thin films. This work deals with the modification of these films, emph{in situ} by altering growing conditions through substrate temperatures control, or post-deposition through reactive ion etching (RIE). The first part of the thesis deals with the modification of TiO$_2$ GLAD humidity sensors using RIE with CF$_4$. The data presented demonstrates improved response times to step changes in humidity. Characterization revealed response times of better then 50~ms (instrument-limited measurement). An etch recipe for complete removal of TiO$_2$ was also demonstrated with shadow masking to transfer patterns into GLAD films. The subsequent chapter focuses on modification of thin film growth conditions by increasing adatom mobility. A radiative heating system was designed and implemented with the ability to achieve chuck temperatures of 400$^circ$C. Capping layers on top of GLAD films were grown to demonstrate effects of emph{in situ} heating, and a quantitative analysis of crack reduction with increased temperatures is presented. Lithographic pattern transfer onto a capped GLAD film was demonstrated. Opposite to the goal of the preceding chapter, the focus of the final experimental chapter was to limit adatom mobility. A LN$_2$-based cooling system was designed and implemented for the purpose of studying the growth by GLAD of lower melting point materials, which under regular growth conditions do not form well-defined structures. Chuck temperatures of $-60$$^circ$C can be achieved during deposition while still allowing substrate rotation. The growth of helical copper films was used to demonstrate the effects of emph{in situ} substrate cooling. / Micro-Electro-Mechanical Systems (MEMS) and Nanotechnology
153

Measurement Of Static Pressure Over Bodies In Hypersonic Shock Tunnel Using MEMS-Based Pressure Sensor Array

Ram, S N 12 1900 (has links) (PDF)
Hypersonic flow is both fascinating and intriguing mainly because of presence of strong entropy and viscous interactions in the flow field. Notwithstanding the tremendous advancements in numerical modeling in the last decade separated hypersonic flow still remains an area where considerable differences are observed between experiments and numerical results. Lack of reliable data base of surface static pressures with good spatial resolution in hypersonic separated flow field is one of the main motivations for the present study. The experiments in hypersonic shock tunnels has an advantage compared to wind tunnels for simulating the total energy content of the flow in addition to the Mach and Reynolds numbers. However the useful test time in shock tunnels is of the order of few milliseconds. Hence in shock tunnel experiments it is essential to have pressure measurement devices which has special features such as small in size, faster response time and the sensors in array form with improved spatial resolutions. Micro Electro Mechanical Systems (MEMS) is an emerging technology, which holds lot of promise in these types of applications. In view of the above requirement, MEMS based pressure sensor array was developed to measure the static pressure distribution. The study is comprised of two parts: one is on the development of MEMS based pressure sensor array, which can be used for hypersonic application and other is on experimental static pressure measurement using MEMS based sensors in separated hypersonic flow over a backward facing step model. Initially a static pressure sensor array with 25 sensors was developed. The static calibration of sensor array was carried out to characterize the sensor array for various characteristic parameters. The preliminary experimental study with cluster of 25 MEMS sensor array mounted on the flat plate did not provide reliable and repeatable results, but gave valuable inputs on the typical problems of using MEMS sensors in short duration hypersonic ground test facilities like shock tunnels. Incidentally, to the best of our knowledge this is first report on use of MEMS based pressure sensors in hypersonic shock tunnel. Later cluster of 5 sensor array was developed with improved electronic packaging and surface finish. The experiments were conducted with flat plate by mounting 5 sensor array shows good agreement in static pressure measurement compared with standard sensors. In the second part of the study a backward facing step model, which simulates the typical gasdynamic flow features associated with hypersonic flow separation is designed. Backward facing step model with step height of 3 mm was mounted with sensor array along the length of model. Just after the step, static pressure measurements were carried out with MEMS sensors. It is important to note that, in the space available in backward facing step model we could mount only one conventional Kulite pressure transducer. The experiments were conducted at Mach number of 6.3 and at stagnation enthalpy of 1.5 MJ/kg in hypersonic shock tunnel (HST-5) at IISc. Based on the static pressure measurement on backward facing step, the location of separation and reattachment points were clearly identified. The static pressure values show that reattachment of flow takes place at about 7 step heights. Numerical simulations were carried out using commercial CFD code, FLUENT for flat plate and backward facing step models to compliment the experiments. The experimental tests results match well with the illustrative numerical simulations results.
154

Advanced methods for GLAD thin films

Kupsta, Martin Unknown Date
No description available.
155

Design, Development, And Integration Of A Meso-scale Eletrostatic Phase Shifter On Microwave Laminate

Lata, Poonam 03 1900 (has links) (PDF)
Recent developments in the area of microfabrication technologies, has enabled the fabrication of many radio frequency/microwave components with better performance and lower cost than possible with semiconductor based fabrication technology. Many of these microfabricated RF components such as switches and phase shifters, popularly known as RF MEMS, are aimed at reducing the insertion loss and improving other performance parameters such as linearity. For these devices size miniaturization is not necessarily important, as in practical subsystems, these components are integrated with RF front-ends on a laminate. This thesis deals with concepts of a low cost passive phase shifter fabricated in-situ on a microwave laminate. The operation of this Mesoscale Electrostatically actuated Phase shifter on microwave Laminate (MEPL) is similar to that of a micromachined distributed MEMS transmission line (DMTL) phase shifter. In spite of advantages of low losses, wide bandwidth, low DC power consumption and high linearity over semiconductor/MMIC technology, microfabricated phase shifters are often not used in field because of issues related to fabrication reliability, packaging and integration. On the other hand, the proposed MEPL will have all the advantages of conventional MEMS phase shifters with additional benefit of lower cost. Furthermore, these are integrable to form a monolithic phased array. A MEPL phase shifter of 50-bridges periodically distributed on the co-planar waveguide (CPW) transmission line is demonstrated in this thesis. MEMS air bridges are electrostatically actuated to vary the capacitance of the transmission line, which changes the phase velocity of the propagation RF signal, consequently phase at the output port. The realized MEPL is characterized for electromagnetic as well as electromechanical performance. The electromechanical characterization of this device is performed using a Laser Doppler Vibrometer (LDV). The measured data showed good agreement with the analytical data.. Major application of a phase shifter is in a phased array antenna system. MEPL is particularly suited for a monolithic phase array antenna. The proposed monolithic phased array antenna system fabrication approach utilizes extremely simple and economical modern printed circuit board technology to pattern the conventional microwave laminate and copper foil. A complete monolithic phased array antenna system is fabricated on a microwave laminate using an embedded phase shifter operating with electrostatic principles. Other components such as DC block and bias tee are integrated into the CPW-microstrip transitions to optimize the space and performance. Integrated phased array antenna is fabricated and tested to demonstrate the beam steering capability. Measured S11 is better than -15dB at the operating frequency of 9.8GHz. The beam steering capability is shown as proof of concept by showing the beam scan angle of 10deg with bias voltage of 125V. The mesoscale phase shifter demonstrated in this thesis has several advantages compared to micromachined phase shifters. The proposed fabrication approach does not use metal deposition/patterning process, which removes the need of high cost clean room and sophisticated films deposition equipments. Secondly, as there are no thin films used, stiction is not expected on phase shifters fabricated with this approach. Since this approach uses thicker metal films, the power handling capability is expected to be significantly higher than micromachined phase shifters. Since conventional phased array antenna system components are fabricated on a microwave laminate, micro machined phase shifters realized on semiconductor substrates are required to be packaged separately before integrating with such phased array circuits. Packaging of the micro-machined RF-MEMS/MEMS devices is still a major issue and contributes to a substantial part of the total cost. Unlike micromachined phase shifters which are required to be packaged and then embedded in phased array applications, device presented in this thesis is packaged in-situ. Compared to similar monolithic phased array antenna reported on silicon substrate which are limited by wafer size, these arrays can be easily extended for larger arrays on microwave laminate as these are available in large size. To summarize, the proposed fabrication approach for phase shifters overcomes many limitations of micromachined components for microwave applications while retaining most of their advantages compared to other existing approaches based on ferrites or semiconductor technologies.
156

Modelagem da Dinâmica do Sistema de Controle de Lastro de uma Plataforma Semisubmersível. / Modeling the Dynamics of Ballast Control System of a semisubmersible platform.

Leandro Marques Samyn 05 February 2010 (has links)
É descrita a modelagem, para controle, da dinâmica de uma plataforma semisubmersível com seis graus de liberdade. O modelo inclui os efeitos dos tanques de lastro como forças e momentos, assim como a dinâmica da plataforma. Os parâmetros do sistema foram obtidos das características da plataforma e de resultados experimentais obtidos com uma plataforma semisubmersível de dimensões reduzidas. O desenvolvimento de uma metodologia e de um software capazes de determinar o volume submerso e o centro de empuxo de uma estrutura com geometria complexa foram pontos determinantes nessa Dissertação, tendo em vista a complexidade do processo e as importâncias desses parâmetros para o desenvolvimento do modelo. A linearização do modelo permitiu a elaboração de uma estratégia de controle capaz de estabilizar a plataforma mesmo em condições iniciais distantes do equilíbrio. As equações que descrevem o movimento da plataforma nos graus de liberdade vertical, jogo e arfagem foram desenvolvidas. A realocação dos polos e um observador de estado foram utilizados com o objetivo de melhorar o controle do sistema. / A six degrees of freedom dynamic model for the development of ballast control systems for semisubmersible platforms is described. The model includes the effects os the ballast tanks such as weights, moments ans inertias as well as the platform dynamic. System parameters are computed from physical characteristics of the platform and from experimental results obtained with a small semisubmersible platform. The development of a methodology and software capable of determining the immersed volume and center of buoyancy of a structure with complex geometry are points, wich in this M. Sc. Dissertation, in view of the complexity of the process and importance of these parameters for model development. The linearization of the model allowed the development of a control strategy capable of stabilizing the semisubmersible platform in initial conditions far from the balance. The equations describing the motion of the platform in the vertical, roll and pitch degrees of freedom have been developed. The relocation of the poles and an observer of state were used in order to improve the control system.
157

Modelagem da Dinâmica do Sistema de Controle de Lastro de uma Plataforma Semisubmersível. / Modeling the Dynamics of Ballast Control System of a semisubmersible platform.

Leandro Marques Samyn 05 February 2010 (has links)
É descrita a modelagem, para controle, da dinâmica de uma plataforma semisubmersível com seis graus de liberdade. O modelo inclui os efeitos dos tanques de lastro como forças e momentos, assim como a dinâmica da plataforma. Os parâmetros do sistema foram obtidos das características da plataforma e de resultados experimentais obtidos com uma plataforma semisubmersível de dimensões reduzidas. O desenvolvimento de uma metodologia e de um software capazes de determinar o volume submerso e o centro de empuxo de uma estrutura com geometria complexa foram pontos determinantes nessa Dissertação, tendo em vista a complexidade do processo e as importâncias desses parâmetros para o desenvolvimento do modelo. A linearização do modelo permitiu a elaboração de uma estratégia de controle capaz de estabilizar a plataforma mesmo em condições iniciais distantes do equilíbrio. As equações que descrevem o movimento da plataforma nos graus de liberdade vertical, jogo e arfagem foram desenvolvidas. A realocação dos polos e um observador de estado foram utilizados com o objetivo de melhorar o controle do sistema. / A six degrees of freedom dynamic model for the development of ballast control systems for semisubmersible platforms is described. The model includes the effects os the ballast tanks such as weights, moments ans inertias as well as the platform dynamic. System parameters are computed from physical characteristics of the platform and from experimental results obtained with a small semisubmersible platform. The development of a methodology and software capable of determining the immersed volume and center of buoyancy of a structure with complex geometry are points, wich in this M. Sc. Dissertation, in view of the complexity of the process and importance of these parameters for model development. The linearization of the model allowed the development of a control strategy capable of stabilizing the semisubmersible platform in initial conditions far from the balance. The equations describing the motion of the platform in the vertical, roll and pitch degrees of freedom have been developed. The relocation of the poles and an observer of state were used in order to improve the control system.
158

Projeto de multi-atuadores piezelétricos homogêneos e gradados utilizando o método de otimização topológica. / Design of graded and homogeneous piezoelectric multi-actuators using the topology optimization method.

Ronny Calixto Carbonari 22 January 2008 (has links)
Microdispositivos piezelétricos tem uma vasta aplicação em mecânica de precisão, como, por exemplo, manipulação de células, microcirurgias, equipamentos de nanotecnologia e principalmente em microeletromecanismos (MEMS). Os microdispositivos piezelétricos considerados nesta tese essencialmente consistem de uma estrutura multi-flexível atuada por duas ou mais piezocerâmicas, que geram deslocamentos e forças em direções e regiões pré-determinadas do domínio, ou seja, a estrutura multi-flexível atua como um transformador mecânico amplificando e alterando os deslocamentos gerados pelas piezocerâmicas nos movimentos de atuação. O desenvolvimento destes microdispositivos piezelétricos em sua grande maioria não utiliza ferramentas sistemáticas e genéricas. A complexidade dos movimentos de atuação torna o desenvolvimento dos microdispositivos piezelétricos complexo, principalmente devido ao surgimento de movimentos indesejados ou acoplados durante a sua atuação. Portanto, é necessário um método sistemático e eficiente como o método de otimização topológica (MOT), que incorpore na sua formulação as principais exigências de projeto dos microdispositivos, como apresentado nesse trabalho. O MOT implementado é baseado na abordagem CAMD (Distribuição Contínua da Distribuição de Material), onde as pseudo-densidades são interpoladas nos nós de cada elemento finito, resultando numa distribuição contínua de material no domínio. Um método adjunto foi implementado para o cálculo das sensibilidades. São consideradas três formulações. A primeira denominada de MAPs (Multi-Atuadores Piezelétricos) considera as regiões piezocerâmicas fixas, otimizando apenas a estrutura multi-flexível no domínio de projeto. Nesta formulação materiais não-piezelétricos (como, por exemplo, Alumínio) e vazio são distribuídos no domínio de projeto, mantendo as regiões piezocerâmicas fixas e homogêneas. Para validar os resultados obtidos com essa formulação foram fabricados protótipos de nanoposicionadores $XY$, que foram caracterizados experimentalmente utilizando técnicas de interferometria laser, considerando excitação quasi-estática. No entanto, essa primeira formulação impõe restrições no problema, limitando a optimalidade da solução obtida pela otimização topológica. Assim, surgiu a necessidade de desenvolver uma segunda formulação, que permite distribuir simultaneamente material não-piezelétrico, piezelétrico e vazio no domínio de projeto, denominada de LOMPs (Localização Ótima do Material Piezelétrico). A formulação dos LOMPs obtém simultaneamente a localização do material piezelétrico na estrutura flexível otimizada pela OT, e inclui também uma variável de projeto para determinar o ângulo ótimo entre as direções de polarização e do campo elétrico. Nesta formulação como as posições dos eletrodos não são conhecidas, ``a priori\'\', é utilizado como abordagem aplicar um campo elétrico constante para determinar a localização do material piezelétrico e conseqüentemente dos eletrodos. Finalmente, foi explorado o conceito de materiais com gradação funcional (MGFs) no projeto dos MAPs. Os MGFs apresentam uma distribuição contínua de materiais na sua microestrutura, não possuindo interface entre os materiais distribuídos, o que possibilita aumentar a vida útil do dispositivo piezelétrico. Assim, foi implementado uma terceira formulação denominada de MAPs MGFs, que permite obter a gradação ótima de materiais piezelétricos e não-piezelétricos no domínio piezocerâmico dos MAPs, conjuntamente com a topologia da estrutura multi-flexível. Essa formulação foi estendida para projetar atuadores bilaminares MGFs. Todas as formulações desenvolvidas utilizam uma função multi-objetivo, que permite controlar a rigidez e a flexibilidade minimizando o movimento acoplado, de cada movimento de atuação. Os exemplos numéricos são limitados a modelos bi-dimensionais, utilizando o estado plano de tensões e deformações mecânicas e elétricas, uma vez que a grande maioria das aplicações dos microdispositivos piezelétricos são bi-dimensionais. / Microtools offer significant promise in a wide range of applications such as cell manipulation, microsurgery, nanotechnology processes, and many other fields. The microtools considered in this doctoral thesis essentially consist of a multi-flexible structure actuated by two or more piezoceramic devices that when each piezoceramic is actuated, it generates an output displacement and force at a specified point of the domain and direction. The multi-flexible structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramic output displacements. Thus, the development of microtools requires the design of actuated flexible structures that can perform complex movements. The development of these microtools is still in the beginning and it can be strongly enhanced by using design tools. In addition, when multiple piezoceramic devices are involved, coupling effects in their movements become critical, especially the appearance of undesired movements, which makes the design task very complex. One way to avoid such undesirable effects is the use of a systematic design method, such as topology optimization, with appropriate formulation of the optimization problem. The topology optimization method implemented is based on the CAMD (Continuous Approximation of Material Distribution) approach where fictitious densities are interpolated at each finite element, providing a continuum material distribution in the domain. The corresponding sensitivity analysis is presented using the adjoint method. Three formulations are considered. The first formulation, called Piezoelectric Multi-Actuators (PMAs), keeps fixed piezoceramic positions in the design domain and only the flexible structure is designed by distributing some non-piezoelectric material (Aluminum, for example). $XY$ Piezoelectric Nanopositioner are manufactured and experimentally analyzed to validate the results of the topology optimization obtained using this formulation. Experimental analyses are conducted using laser interferometry to measure displacement, while considering a quasi-static excitation. However, this first formulation imposes a constraint to the position of piezoelectric material in the optimization problem limiting the optimality of the solution. Thus, the second formulation presented, called LOMPs, allows the simultaneous distribution of non-piezoelectric and piezoelectric material in the design domain, to achieve certain specified actuation movements. The optimization problem is posed as the simultaneous search for an optimal topology of a flexible structure as well as the optimal position of piezoceramics in the design domain and optimal rotation angle of piezoceramic material axes that maximize output displacements or output forces at a specified point of the domain and direction. When the distribution of a non-piezoelectric conductor material and a piezoceramic material is considered in the design domain, the electrode positions are not known ``a priori\'\'. To circumvent this problem, an electric field is applied as electrical excitation. Finally, the concept of functionally graded materials (FGM) is applied to PMAs design. FGMs are special materials that possess continuously graded properties without interfaces which can increase lifetime of piezoelectric devices. Thus, a third formulation is implemented to find the optimum gradation and polarization sign variation of piezoceramic FGMs, while simultaneously optimizing the multi-flexible structural configuration. This formulation is extended to design bimorph type FGM actuators. For all developed formulations, a multi-objective function is defined that controls the stiffness and flexibility, minimizing the coupling movement of each actuated movement. The present examples are limited to two-dimensional models because most part of the applications for such micro-tools are planar devices.
159

Analysis And Design Of Micro-Opto-Electro-Mechanical Systems (MOEMS) Based Pressure And Vibration Sensors

Pattnaik, Prasant Kumar 07 1900 (has links) (PDF)
No description available.
160

Frequency-Tuning and Dynamic Simulation of Electrostatically Actuated Beams

Mittal, Saurabh January 2014 (has links) (PDF)
The resonance frequency of electrostatically actuated micromachined beams can be tuned substantially by applying a DC voltage bias, first by decreasing the frequency until the onset of pull-in and then by increasing it by the virtue of contact. With the objective of modeling and designing the micromechanical structures after pull-in, a semi-analytical method was developed to determine the length of the contact between the beam and the substrate. The semi-analytical method which is validated on the straight beams is extended for the folded beam structures. This method provides a tool to the microsystem designer to quickly evaluate the deformed configuration of the folded beams after pull-in without the time-intensive contact analysis. This tool is used to design the micro‐speaker elements suitable for emitting low frequency sounds. Multiple instabilities after the pull-in were numerically observed and it was shown that the resonant frequency of an L-shaped beam can be varied in different frequency bands. The speaker element can emit any frequency in a given range, as the resonant frequency of the beam structures can be tuned both before and after pull-in. Operating the speaker element at resonance maximizes the efficiency of the speaker design because the amplitude of vibration is maximum at the resonance frequency. Furthermore, the interplay between the torsional and bending loads is used to minimize the out-of-plane deflection under self weight. A selection criterion is employed to choose a beam structure with optimum stiffness and natural frequency. Beam-based micro-speaker element designs with single and multi-layered suspended structures are proposed. Practical considerations such as volume displacement, mode shapes and dynamic coupling are discussed, on the basis of which design guidelines for a speaker element are proposed. Squeeze film effects and nonlinearity due to the midplane stretching is integrated into the transient analysis model to analyze the effect on the stroke of beam operating at resonance. A comparison between various speaker elements is presented.

Page generated in 0.0637 seconds