Spelling suggestions: "subject:"[een] MIXTURE MODEL"" "subject:"[enn] MIXTURE MODEL""
161 |
Fusion techniques for iris recognition in degraded sequences / Techniques de fusion pour la reconnaissance de personne par l’iris dans des séquences dégradéesOthman, Nadia 11 March 2016 (has links)
Parmi les diverses modalités biométriques qui permettent l'identification des personnes, l'iris est considéré comme très fiable, avec un taux d'erreur remarquablement faible. Toutefois, ce niveau élevé de performances est obtenu en contrôlant la qualité des images acquises et en imposant de fortes contraintes à la personne (être statique et à proximité de la caméra). Cependant, dans de nombreuses applications de sécurité comme les contrôles d'accès, ces contraintes ne sont plus adaptées. Les images résultantes souffrent alors de diverses dégradations (manque de résolution, artefacts...) qui affectent négativement les taux de reconnaissance. Pour contourner ce problème, il est possible d’exploiter la redondance de l’information découlant de la disponibilité de plusieurs images du même œil dans la séquence enregistrée. Cette thèse se concentre sur la façon de fusionner ces informations, afin d'améliorer les performances. Dans la littérature, diverses méthodes de fusion ont été proposées. Cependant, elles s’accordent sur le fait que la qualité des images utilisées dans la fusion est un facteur crucial pour sa réussite. Plusieurs facteurs de qualité doivent être pris en considération et différentes méthodes ont été proposées pour les quantifier. Ces mesures de qualité sont généralement combinées pour obtenir une valeur unique et globale. Cependant, il n'existe pas de méthode de combinaison universelle et des connaissances a priori doivent être utilisées, ce qui rend le problème non trivial. Pour faire face à ces limites, nous proposons une nouvelle manière de mesurer et d'intégrer des mesures de qualité dans un schéma de fusion d'images, basé sur une approche de super-résolution. Cette stratégie permet de remédier à deux problèmes courants en reconnaissance par l'iris: le manque de résolution et la présence d’artefacts dans les images d'iris. La première partie de la thèse consiste en l’élaboration d’une mesure de qualité pertinente pour quantifier la qualité d’image d’iris. Elle repose sur une mesure statistique locale de la texture de l’iris grâce à un modèle de mélange de Gaussienne. L'intérêt de notre mesure est 1) sa simplicité, 2) son calcul ne nécessite pas d'identifier a priori les types de dégradations, 3) son unicité, évitant ainsi l’estimation de plusieurs facteurs de qualité et un schéma de combinaison associé et 4) sa capacité à prendre en compte la qualité intrinsèque des images mais aussi, et surtout, les défauts liés à une mauvaise segmentation de la zone d’iris. Dans la deuxième partie de la thèse, nous proposons de nouvelles approches de fusion basées sur des mesures de qualité. Tout d’abord, notre métrique est utilisée comme une mesure de qualité globale de deux façons différentes: 1) comme outil de sélection pour détecter les meilleures images de la séquence et 2) comme facteur de pondération au niveau pixel dans le schéma de super-résolution pour donner plus d'importance aux images de bonnes qualités. Puis, profitant du caractère local de notre mesure de qualité, nous proposons un schéma de fusion original basé sur une pondération locale au niveau pixel, permettant ainsi de prendre en compte le fait que les dégradations peuvent varier d’une sous partie à une autre. Ainsi, les zones de bonne qualité contribueront davantage à la reconstruction de l'image fusionnée que les zones présentant des artéfacts. Par conséquent, l'image résultante sera de meilleure qualité et pourra donc permettre d'assurer de meilleures performances en reconnaissance. L'efficacité des approches proposées est démontrée sur plusieurs bases de données couramment utilisées: MBGC, Casia-Iris-Thousand et QFIRE à trois distances différentes. Nous étudions séparément l'amélioration apportée par la super-résolution, la qualité globale, puis locale dans le processus de fusion. Les résultats montrent une amélioration importante apportée par l'utilisation de la qualité globale, amélioration qui est encore augmentée en utilisant la qualité locale / Among the large number of biometric modalities, iris is considered as a very reliable biometrics with a remarkably low error rate. The excellent performance of iris recognition systems are obtained by controlling the quality of the captured images and by imposing certain constraints on users, such as standing at a close fixed distance from the camera. However, in many real-world applications such as control access and airport boarding these constraints are no longer suitable. In such non ideal conditions, the resulting iris images suffer from diverse degradations which have a negative impact on the recognition rate. One way to try to circumvent this bad situation is to use some redundancy arising from the availability of several images of the same eye in the recorded sequence. Therefore, this thesis focuses on how to fuse the information available in the sequence in order to improve the performance. In the literature, diverse schemes of fusion have been proposed. However, they agree on the fact that the quality of the used images in the fusion process is an important factor for its success in increasing the recognition rate. Therefore, researchers concentrated their efforts in the estimation of image quality to weight each image in the fusion process according to its quality. There are various iris quality factors to be considered and diverse methods have been proposed for quantifying these criteria. These quality measures are generally combined to one unique value: a global quality. However, there is no universal combination scheme to do so and some a priori knowledge has to be inserted, which is not a trivial task. To deal with these drawbacks, in this thesis we propose of a novel way of measuring and integrating quality measures in a super-resolution approach, aiming at improving the performance. This strategy can handle two types of issues for iris recognition: the lack of resolution and the presence of various artifacts in the captured iris images. The first part of the doctoral work consists in elaborating a relevant quality metric able to quantify locally the quality of the iris images. Our measure relies on a Gaussian Mixture Model estimation of clean iris texture distribution. The interest of our quality measure is 1) its simplicity, 2) its computation does not require identifying in advance the type of degradations that can occur in the iris image, 3) its uniqueness, avoiding thus the computation of several quality metrics and associated combination rule and 4) its ability to measure the intrinsic quality and to specially detect segmentation errors. In the second part of the thesis, we propose two novel quality-based fusion schemes. Firstly, we suggest using our quality metric as a global measure in the fusion process in two ways: as a selection tool for detecting the best images and as a weighting factor at the pixel-level in the super-resolution scheme. In the last case, the contribution of each image of the sequence in final fused image will only depend on its overall quality. Secondly, taking advantage of the localness of our quality measure, we propose an original fusion scheme based on a local weighting at the pixel-level, allowing us to take into account the fact that degradations can be different in diverse parts of the iris image. This means that regions free from occlusions will contribute more in the image reconstruction than regions with artefacts. Thus, the quality of the fused image will be optimized in order to improve the performance. The effectiveness of the proposed approaches is shown on several databases commonly used: MBGC, Casia-Iris-Thousand and QFIRE at three different distances: 5, 7 and 11 feet. We separately investigate the improvement brought by the super-resolution, the global quality and the local quality in the fusion process. In particular, the results show the important improvement brought by the use of the global quality, improvement that is even increased using the local quality
|
162 |
Comparing unsupervised clustering algorithms to locate uncommon user behavior in public travel data : A comparison between the K-Means and Gaussian Mixture Model algorithmsAndrésen, Anton, Håkansson, Adam January 2020 (has links)
Clustering machine learning algorithms have existed for a long time and there are a multitude of variations of them available to implement. Each of them has its advantages and disadvantages, which makes it challenging to select one for a particular problem and application. This study focuses on comparing two algorithms, the K-Means and Gaussian Mixture Model algorithms for outlier detection within public travel data from the travel planning mobile application MobiTime1[1]. The purpose of this study was to compare the two algorithms against each other, to identify differences between their outlier detection results. The comparisons were mainly done by comparing the differences in number of outliers located for each model, with respect to outlier threshold and number of clusters. The study found that the algorithms have large differences regarding their capabilities of detecting outliers. These differences heavily depend on the type of data that is used, but one major difference that was found was that K-Means was more restrictive then Gaussian Mixture Model when it comes to classifying data points as outliers. The result of this study could help people determining which algorithms to implement for their specific application and use case.
|
163 |
Analýza derivátů pterinu kapilární zónovou elektroforézou / Analysis of pterine derivatives by capillary zone electrophoresisKrajíček, Jan January 2012 (has links)
Pterins belong to an important group of compounds, acting as inhibitors, sensiziters, enzymes, coenzymes, pigments etc. and together with carotenoids and anthraquinones are responsible for characteristic coloration of bugs. This work was focused on the development of a capillary electrophoretic separation method for the analysis of six pterine derivatives, namely biopterine, neopterine, isoxanthopterine, leukopterine, xanthopterine and erythropterine and on their identification in the real samples. Separation was conducted in an uncoated fused-silica capillary termostated at 30 řC. Separation electrolyte contained boric acid, tris(hydroxymethyl)aminomethane and disodium salt of ethylenediaminetetraacetic acid. The effects of buffer pH, concentration of electrolyte components, separation voltage and wavelength of UV detection on electromigration behavior and detection sensitivity were studied. Under the optimized separation conditions, organic extracts of the three forms of Graphosoma semipunctatum bugs were analyzed.
|
164 |
Speech to Text for Swedish using KALDI / Tal till text, utvecklandet av en svensk taligenkänningsmodell i KALDIKullmann, Emelie January 2016 (has links)
The field of speech recognition has during the last decade left the re- search stage and found its way in to the public market. Most computers and mobile phones sold today support dictation and transcription in a number of chosen languages. Swedish is often not one of them. In this thesis, which is executed on behalf of the Swedish Radio, an Automatic Speech Recognition model for Swedish is trained and the performance evaluated. The model is built using the open source toolkit Kaldi. Two approaches of training the acoustic part of the model is investigated. Firstly, using Hidden Markov Model and Gaussian Mixture Models and secondly, using Hidden Markov Models and Deep Neural Networks. The later approach using deep neural networks is found to achieve a better performance in terms of Word Error Rate. / De senaste åren har olika tillämpningar inom människa-dator interaktion och främst taligenkänning hittat sig ut på den allmänna marknaden. Många system och tekniska produkter stöder idag tjänsterna att transkribera tal och diktera text. Detta gäller dock främst de större språken och sällan finns samma stöd för mindre språk som exempelvis svenskan. I detta examensprojekt har en modell för taligenkänning på svenska ut- vecklas. Det är genomfört på uppdrag av Sveriges Radio som skulle ha stor nytta av en fungerande taligenkänningsmodell på svenska. Modellen är utvecklad i ramverket Kaldi. Två tillvägagångssätt för den akustiska träningen av modellen är implementerade och prestandan för dessa två är evaluerade och jämförda. Först tränas en modell med användningen av Hidden Markov Models och Gaussian Mixture Models och slutligen en modell där Hidden Markov Models och Deep Neural Networks an- vänds, det visar sig att den senare uppnår ett bättre resultat i form av måttet Word Error Rate.
|
165 |
Neural probabilistic topic modeling of short and messy text / Neuronprobabilistisk ämnesmodellering av kort och stökig textHarrysson, Mattias January 2016 (has links)
Exploring massive amount of user generated data with topics posits a new way to find useful information. The topics are assumed to be “hidden” and must be “uncovered” by statistical methods such as topic modeling. However, the user generated data is typically short and messy e.g. informal chat conversations, heavy use of slang words and “noise” which could be URL’s or other forms of pseudo-text. This type of data is difficult to process for most natural language processing methods, including topic modeling. This thesis attempts to find the approach that objectively give the better topics from short and messy text in a comparative study. The compared approaches are latent Dirichlet allocation (LDA), Re-organized LDA (RO-LDA), Gaussian Mixture Model (GMM) with distributed representation of words, and a new approach based on previous work named Neural Probabilistic Topic Modeling (NPTM). It could only be concluded that NPTM have a tendency to achieve better topics on short and messy text than LDA and RO-LDA. GMM on the other hand could not produce any meaningful results at all. The results are less conclusive since NPTM suffers from long running times which prevented enough samples to be obtained for a statistical test. / Att utforska enorma mängder användargenererad data med ämnen postulerar ett nytt sätt att hitta användbar information. Ämnena antas vara “gömda” och måste “avtäckas” med statistiska metoder såsom ämnesmodellering. Dock är användargenererad data generellt sätt kort och stökig t.ex. informella chattkonversationer, mycket slangord och “brus” som kan vara URL:er eller andra former av pseudo-text. Denna typ av data är svår att bearbeta för de flesta algoritmer i naturligt språk, inklusive ämnesmodellering. Det här arbetet har försökt hitta den metod som objektivt ger dem bättre ämnena ur kort och stökig text i en jämförande studie. De metoder som jämfördes var latent Dirichlet allocation (LDA), Re-organized LDA (RO-LDA), Gaussian Mixture Model (GMM) with distributed representation of words samt en egen metod med namnet Neural Probabilistic Topic Modeling (NPTM) baserat på tidigare arbeten. Den slutsats som kan dras är att NPTM har en tendens att ge bättre ämnen på kort och stökig text jämfört med LDA och RO-LDA. GMM lyckades inte ge några meningsfulla resultat alls. Resultaten är mindre bevisande eftersom NPTM har problem med långa körtider vilket innebär att tillräckligt många stickprov inte kunde erhållas för ett statistiskt test.
|
166 |
Automatic Speech Recognition in SomaliGabriel, Naveen January 2020 (has links)
The field of speech recognition during the last decade has left the research stage and found its way into the public market, and today, speech recognition software is ubiquitous around us. An automatic speech recognizer understands human speech and represents it as text. Most of the current speech recognition software employs variants of deep neural networks. Before the deep learning era, the hybrid of hidden Markov model and Gaussian mixture model (HMM-GMM) was a popular statistical model to solve speech recognition. In this thesis, automatic speech recognition using HMM-GMM was trained on Somali data which consisted of voice recording and its transcription. HMM-GMM is a hybrid system in which the framework is composed of an acoustic model and a language model. The acoustic model represents the time-variant aspect of the speech signal, and the language model determines how probable is the observed sequence of words. This thesis begins with background about speech recognition. Literature survey covers some of the work that has been done in this field. This thesis evaluates how different language models and discounting methods affect the performance of speech recognition systems. Also, log scores were calculated for the top 5 predicted sentences and confidence measures of pre-dicted sentences. The model was trained on 4.5 hrs of voiced data and its corresponding transcription. It was evaluated on 3 mins of testing data. The performance of the trained model on the test set was good, given that the data was devoid of any background noise and lack of variability. The performance of the model is measured using word error rate(WER) and sentence error rate (SER). The performance of the implemented model is also compared with the results of other research work. This thesis also discusses why log and confidence score of the sentence might not be a good way to measure the performance of the resulting model. It also discusses the shortcoming of the HMM-GMM model, how the existing model can be improved, and different alternatives to solve the problem.
|
167 |
Modèles de mélange de von Mises-Fisher / Von Mises-Fisher mixture modelsParr Bouberima, Wafia 15 November 2013 (has links)
Dans la vie actuelle, les données directionnelles sont présentes dans la majorité des domaines, sous plusieurs formes, différents aspects et de grandes tailles/dimensions, d'où le besoin de méthodes d'étude efficaces des problématiques posées dans ce domaine. Pour aborder le problème de la classification automatique, l'approche probabiliste est devenue une approche classique, reposant sur l'idée simple : étant donné que les g classes sont différentes entre elles, on suppose que chacune suit une loi de probabilité connue, dont les paramètres sont en général différents d'une classe à une autre; on parle alors de modèle de mélange de lois de probabilités. Sous cette hypothèse, les données initiales sont considérées comme un échantillon d'une variable aléatoire d-dimensionnelle dont la densité est un mélange de g distributions de probabilités spécifiques à chaque classe. Dans cette thèse nous nous sommes intéressés à la classification automatique de données directionnelles, en utilisant des méthodes de classification les mieux adaptées sous deux approches: géométrique et probabiliste. Dans la première, en explorant et comparant des algorithmes de type kmeans; dans la seconde, en s'attaquant directement à l'estimation des paramètres à partir desquels se déduit une partition à travers la maximisation de la log-vraisemblance, représentée par l'algorithme EM. Pour cette dernière approche, nous avons repris le modèle de mélange de distributions de von Mises-Fisher, nous avons proposé des variantes de l'algorithme EMvMF, soit CEMvMF, le SEMvMF et le SAEMvMF, dans le même contexte, nous avons traité le problème de recherche du nombre de composants et le choix du modèle de mélange, ceci en utilisant quelques critères d'information : Bic, Aic, Aic3, Aic4, Aicc, Aicu, Caic, Clc, Icl-Bic, Ll, Icl, Awe. Nous terminons notre étude par une comparaison du modèle vMF avec un modèle exponentiel plus simple ; à l'origine ce modèle part du principe que l'ensemble des données est distribué sur une hypersphère de rayon ρ prédéfini, supérieur ou égal à un. Nous proposons une amélioration du modèle exponentiel qui sera basé sur une étape estimation du rayon ρ au cours de l'algorithme NEM. Ceci nous a permis dans la plupart de nos applications de trouver de meilleurs résultats; en proposant de nouvelles variantes de l'algorithme NEM qui sont le NEMρ , NCEMρ et le NSEMρ. L'expérimentation des algorithmes proposés dans ce travail a été faite sur une variété de données textuelles, de données génétiques et de données simulées suivant le modèle de von Mises-Fisher (vMF). Ces applications nous ont permis une meilleure compréhension des différentes approches étudiées le long de cette thèse. / In contemporary life directional data are present in most areas, in several forms, aspects and large sizes / dimensions; hence the need for effective methods of studying the existing problems in these fields. To solve the problem of clustering, the probabilistic approach has become a classic approach, based on the simple idea: since the g classes are different from each other, it is assumed that each class follows a distribution of probability, whose parameters are generally different from one class to another. We are concerned here with mixture modelling. Under this assumption, the initial data are considered as a sample of a d-dimensional random variable whose density is a mixture of g distributions of probability where each one is specific to a class. In this thesis we are interested in the clustering of directional data that has been treated using known classification methods which are the most appropriate for this case. In which both approaches the geometric and the probabilistic one have been considered. In the first, some kmeans like algorithms have been explored and considered. In the second, by directly handling the estimation of parameters from which is deduced the partition maximizing the log-likelihood, this approach is represented by the EM algorithm. For the latter approach, model mixtures of distributions of von Mises-Fisher have been used, proposing variants of the EM algorithm: EMvMF, the CEMvMF, the SEMvMF and the SAEMvMF. In the same context, the problem of finding the number of the components in the mixture and the choice of the model, using some information criteria {Bic, Aic, Aic3, Aic4, AICC, AICU, CAIC, Clc, Icl-Bic, LI, Icl, Awe} have been discussed. The study concludes with a comparison of the used vMF model with a simpler exponential model. In the latter, it is assumed that all data are distributed on a hypersphere of a predetermined radius greater than one, instead of a unit hypersphere in the case of the vMF model. An improvement of this method based on the estimation step of the radius in the algorithm NEMρ has been proposed: this allowed us in most of our applications to find the best partitions; we have developed also the NCEMρ and NSEMρ algorithms. The algorithms proposed in this work were performed on a variety of textual data, genetic data and simulated data according to the vMF model; these applications gave us a better understanding of the different studied approaches throughout this thesis.
|
168 |
Classification et inférence de réseaux pour les données RNA-seq / Clustering and network inference for RNA-seq dataGallopin, Mélina 09 December 2015 (has links)
Cette thèse regroupe des contributions méthodologiques à l'analyse statistique des données issues des technologies de séquençage du transcriptome (RNA-seq). Les difficultés de modélisation des données de comptage RNA-seq sont liées à leur caractère discret et au faible nombre d'échantillons disponibles, limité par le coût financier du séquençage. Une première partie de travaux de cette thèse porte sur la classification à l'aide de modèle de mélange. L'objectif de la classification est la détection de modules de gènes co-exprimés. Un choix naturel de modélisation des données RNA-seq est un modèle de mélange de lois de Poisson. Mais des transformations simples des données permettent de se ramener à un modèle de mélange de lois gaussiennes. Nous proposons de comparer, pour chaque jeu de données RNA-seq, les différentes modélisations à l'aide d'un critère objectif permettant de sélectionner la modélisation la plus adaptée aux données. Par ailleurs, nous présentons un critère de sélection de modèle prenant en compte des informations biologiques externes sur les gènes. Ce critère facilite l'obtention de classes biologiquement interprétables. Il n'est pas spécifique aux données RNA-seq. Il est utile à toute analyse de co-expression à l'aide de modèles de mélange visant à enrichir les bases de données d'annotations fonctionnelles des gènes. Une seconde partie de travaux de cette thèse porte sur l'inférence de réseau à l'aide d'un modèle graphique. L'objectif de l'inférence de réseau est la détection des relations de dépendance entre les niveaux d'expression des gènes. Nous proposons un modèle d'inférence de réseau basé sur des lois de Poisson, prenant en compte le caractère discret et la grande variabilité inter-échantillons des données RNA-seq. Cependant, les méthodes d'inférence de réseau nécessitent un nombre d'échantillons élevé.Dans le cadre du modèle graphique gaussien, modèle concurrent au précédent, nous présentons une approche non-asymptotique pour sélectionner des sous-ensembles de gènes pertinents, en décomposant la matrice variance en blocs diagonaux. Cette méthode n'est pas spécifique aux données RNA-seq et permet de réduire la dimension de tout problème d'inférence de réseau basé sur le modèle graphique gaussien. / This thesis gathers methodologicals contributions to the statistical analysis of next-generation high-throughput transcriptome sequencing data (RNA-seq). RNA-seq data are discrete and the number of samples sequenced is usually small due to the cost of the technology. These two points are the main statistical challenges for modelling RNA-seq data.The first part of the thesis is dedicated to the co-expression analysis of RNA-seq data using model-based clustering. A natural model for discrete RNA-seq data is a Poisson mixture model. However, a Gaussian mixture model in conjunction with a simple transformation applied to the data is a reasonable alternative. We propose to compare the two alternatives using a data-driven criterion to select the model that best fits each dataset. In addition, we present a model selection criterion to take into account external gene annotations. This model selection criterion is not specific to RNA-seq data. It is useful in any co-expression analysis using model-based clustering designed to enrich functional annotation databases.The second part of the thesis is dedicated to network inference using graphical models. The aim of network inference is to detect relationships among genes based on their expression. We propose a network inference model based on a Poisson distribution taking into account the discrete nature and high inter sample variability of RNA-seq data. However, network inference methods require a large number of samples. For Gaussian graphical models, we propose a non-asymptotic approach to detect relevant subsets of genes based on a block-diagonale decomposition of the covariance matrix. This method is not specific to RNA-seq data and reduces the dimension of any network inference problem based on the Gaussian graphical model.
|
169 |
Optimalizace modelování gaussovských směsí v podprostorech a jejich skórování v rozpoznávání mluvčího / Optimization of Gaussian Mixture Subspace Models and Related Scoring Algorithms in Speaker VerificationGlembek, Ondřej January 2012 (has links)
Tato práce pojednává o modelování v podprostoru parametrů směsí gaussovských rozložení pro rozpoznávání mluvčího. Práce se skládá ze tří částí. První část je věnována skórovacím metodám při použití sdružené faktorové analýzy k modelování mluvčího. Studované metody se liší převážně v tom, jak se vypořádávají s variabilitou kanálu testovacích nahrávek. Metody jsou prezentovány v souvislosti s obecnou formou funkce pravděpodobnosti pro sdruženou faktorovou analýzu a porovnány jak z hlediska přesnosti, tak i z hlediska rychlosti. Je zde prokázáno, že použití lineární aproximace pravděpodobnostní funkce dává výsledky srovnatelné se standardním vyhodnocením pravděpodobnosti při dramatickém zjednodušení matematického zápisu a tím i zvýšení rychlosti vyhodnocování. Druhá část pojednává o extrakci tzv. i-vektorů, tedy nízkodimenzionálních reprezentací nahrávek. Práce prezentuje dva přístupy ke zjednodušení extrakce. Motivací pro tuto část bylo jednak urychlení extrakce i-vektorů, jednak nasazení této úspěšné techniky na jednoduchá zařízení typu mobilní telefon, a také matematické zjednodušení umožněňující využití numerických optimalizačních metod pro diskriminativní trénování. Výsledky ukazují, že na dlouhých nahrávkách je zrychlení vykoupeno poklesem úspěšnosti rozpoznávání, avšak na krátkých nahrávkách, kde je úspěšnost rozpoznávání nízká, se rozdíly úspěšnosti stírají. Třetí část se zabývá diskriminativním trénováním v oblasti rozpoznávání mluvčího. Jsou zde shrnuty poznatky z předchozích prací zabývajících se touto problematikou. Kapitola navazuje na poznatky z předchozích dvou částí a pojednává o diskriminativním trénování parametrů extraktoru i-vektorů. Výsledky ukazují, že při klasickém trénování extraktoru a následném diskriminatviním přetrénování tyto metody zvyšují úspěšnost.
|
170 |
[en] IMPACT OF MOLECULAR DIFFUSION MODELS IN THE PREDICTION OF WAX DEPOSITION / [pt] IMPACTO DE MODELOS DE DIFUSÃO MOLECULAR NA PREVISÃO DE DEPOSIÇÃO DE PARAFINAPAULO GUSTAVO CANDIDO DE OLIVEIRA 21 November 2022 (has links)
[pt] O petróleo é constituído por uma cadeia de hidrocarbonetos, os quais se
precipitam na forma de partículas sólidas de parafina, quando a sua temperatura cai
abaixo de um patamar conhecido como TIAC (Temperatura Inicial de
Aparecimento de Cristais). Essas partículas podem se depositar nas paredes internas
dos dutos obstruindo o escoamento, podendo gerar prejuízos da ordem de milhões
de dólares. Por esse motivo, a habilidade de previsão e controle da deposição de
parafina em eventos futuros é de fundamental importância tanto para projetistas
como operadores de tubulações. Visando lidar com esse problema, grande esforço
vem sendo feito pela comunidade científica com o intuito de aperfeiçoar as
metodologias para previsão do depósito de parafina. Frequentemente, a modelagem
da difusão das espécies é realizada utilizando a Lei de Fick, válida para misturas
binárias, apesar dos hidrocarbonetos presentes no petróleo formarem uma mistura
multicomponente. O presente trabalho propõe avaliar o fluxo difusivo de massa das
espécies utilizando o modelo Stefan-Maxwell, compatível com sistemas
multicomponentes. Para determinar a evolução axial e temporal da espessura do
depósito de parafina, o escoamento foi modelado como uma mistura líquido/sólido
e equações de conservação de energia, massa, quantidade de movimento linear e
continuidade das espécies são resolvidas, acopladas com o modelo termodinâmico
de múltiplas soluções sólidas, para determinação da precipitação da parafina. As
equações de conservação foram resolvidas utilizando o software de código livre
OpenFOAM (marca registrada). Uma comparação das previsões obtidas com a modelagem de Fick
e de Stefan-Maxwell com dados experimentais, mostrou que no início do processo
de deposição, o impacto do modelo difusivo é desprezível. Porém, observou-se que
a medida que o tempo passa, o modelo de Stefan Maxwell prevê um maior
incremento da concentração das espécies mais pesadas no interior do depósito de
parafina quando comparado com a previsão da modelagem de Fick. / [en] Petroleum is formed by a chain of hydrocarbons, which precipitates in the
form of solid particles of paraffin, when its temperature drops below a threshold
known as Wax Appearance Temperature (WAT). These particles can be deposited
on the inner walls of the pipelines, obstructing the flow, which can generate losses
in the order of several millions of dollars. For this reason, the ability to predict and
control wax deposition in future events is of fundamental importance for both
designers and operators of pipelines. In an attempt to deal with this problem, a great
effort has been made by the scientific community aiming to improve wax deposition
prediction methodologies. Often, the modeling of species diffusion is performed
using Fick s law, valid for binary mixtures, although the hydrocarbons present in
the oil form a multicomponent solution. The present work proposes to evaluate the
species mass diffusive flux employing the Stefan-Maxwell model, compatible with
multicomponent systems. To determine the axial and temporal evolution of the wax
deposition thickness, the flow was modelled as a liquid/solid mixture and the
conservation equations of energy, mass, linear momentum and species continuity
were solved coupled with the thermodynamic model of multiple solid solutions, to
determine the paraffin precipitation. The conservation equations were solved using
the open-source software OpenFOAM (trademark). A comparison of the predictions obtained
with the Fick and Stefan-Maxwell models with experimental data showed that at
the beginning of the deposition process, the impact of diffusive model is negligible.
However, it was observed that as time passes, the Stefan-Maxwell model predicts
a greater increase in the concentration of heaviest species inside the wax deposit
when compared to the prediction of Fick s law
|
Page generated in 0.0448 seconds