• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 89
  • 24
  • 18
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 389
  • 389
  • 97
  • 95
  • 88
  • 87
  • 63
  • 47
  • 47
  • 42
  • 38
  • 37
  • 37
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Summary of Laboratory Multiphase Flow Studies in 2” Diameter Pipe at the University of Dayton and Comparison to OLGA Predictions

Duran, Tibo 03 June 2015 (has links)
No description available.
182

Computational Modeling and Simulation of Thermal-Fluid Flow and Topology Formation in Laser Metal Additive Manufacturing

Vincent, Timothy John January 2017 (has links)
No description available.
183

Inhibition mechanisms of corrosion inhibitors in multiphase flow conditions using electrochemical techniques

Chen, Yue January 2000 (has links)
No description available.
184

A study of drag reducing agents in multiphase flow in large diameter horizontal pipelines

Tullius, Lisa January 2000 (has links)
No description available.
185

Study of Slug Flow Characteristics and Performance of Corrosion Inhibitors, in Multiphase Flow, in Horizontal Oil and Gas Pipelines

Kaul, Ashwini January 1996 (has links)
No description available.
186

A Novel Lattice Boltzmann Method for Direct Numerical Simulation of Multiphase Flows

Yu, Zhao January 2009 (has links)
No description available.
187

[en] NUMERICAL SIMULATION OF MULTIPHASE FLOWS WITH ENHANCED CURVATURE COMPUTATION BY POINT-CLOUD SAMPLING / [pt] SIMULAÇÃO NUMÉRICA DE ESCOAMENTOS MULTIFÁSICOS COM APRIMORAMENTO NO CÁLCULO DA CURVATURA PELA AMOSTRAGEM POR NUVEM DE PONTOS

BRUNO DE BARROS MENDES KASSAR 28 September 2016 (has links)
[pt] Volume of Fluid (VOF) é um método amplamente empregado na predição de escoamentos multifásicos devido à sua simplicidade, boas características de conservação de massa e natural tratamento de interfaces topologicamente complexas. No entanto, para escoamentos dominados por tensão interfacial, a literatura tem mostrado que a precisão nas estimativas da tensão interfacial ainda é um problema em questão, que pode levar a correntes parasíticas e previsão imprecisa da condição de salto de pressão através das interfaces. Isto ocorre principalmente devido às variações abruptas do campo de fração volumétrica através das interfaces, que leva a imprecisão no cálculo das curvaturas interfaciais. Portanto, diferentes abordagens têm sido apresentadas para mitigar este problema, incluindo funções-altura, suavização da fração volumétrica, ajuste parabólico, entre outros. Este trabalho propõe uma nova abordagem para estimativa de curvatura em VOF, mas não limitado a este, que lança uma nova luz a este problema persistente. A ideia é amostrar a interface por nuvens de pontos e normais na isosuperfície de nível 0.5 do campo de fração volumétrica e calcular a curvatura para cada ponto da nuvem por uma técnica de Computação Gráfica (ajuste de normais). As curvaturas são, então, projetadas na malha Euleriana de maneira tal como no método Front-Tracking. O novo método foi implementado no código padrão de VOF do OpenFOAM (interFoam) resultando em melhorias nas estimativas de salto de pressão e em significativa redução das correntes espúrias. Simulações numéricas foram realizadas e resultados comparados a dados de referência demonstrando a viabilidade da ideia. / [en] Volume of Fluid (VOF) is a widely employed method for multiphase flows prediction for its simplicity, good mass conservation characteristics and natural handling of topologically complex interfaces. For surface tension dominated flows, however, literature has shown that accuracy in surface tension estimations is still an issue, what may cause parasitic currents and inaccurate prediction of pressure jump condition across interfaces. It occurs mainly due to abrupt changes in the volume fraction field across the interfaces, which takes to inaccurate estimates of interfacial curvatures. Therefore, different approaches have been proposed to mitigate this problem including height-functions, volume fraction smoothing, parabolic fittings, among others. This work proposes a novel approach for curvature estimation in VOF, but not limited to it, that sheds a new light on this persistent problem. The idea is to sample the interfaces with clouds of points and normals at the 0.5 level isosurface of the volume fraction field and to compute the curvature for each point of the cloud by a Computer Graphics technique (normal fitting). The curvatures are then projected onto the Eulerian grid in a Front-Tracking fashion. The new method was implemented in the standard OpenFOAM VOF solver (interFoam) resulting in improvements on the pressure jump estimations and in significant reduction of spurious currents. Numerical simulations were performed and results compared to benchmark data showing the feasibility of the idea.
188

Particle-Resolving Simulations of Dune Migration: Novel Algorithms and Physical Insights

Sun, Rui 26 June 2017 (has links)
Sediment transport is ubiquitous in aquatic environments, and the study of sediment transport is important for both engineering and environmental reasons. However, the understanding and prediction of sediment transport are hindered by its complex dynamics and regimes. In this dissertation, the open-source solver SediFoam is developed for high-fidelity particle-resolving simulations of various sediment transport problems based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional flow simulations on unstructured mesh; LAMMPS is a massively parallel DEM solver for molecular dynamics. To enable the particle-resolving simulation of sediment transport on an arbitrary mesh, a diffusion-based algorithm is used in SediFoam to obtain the averaged Eulerian fields from discrete particle data. The parallel interface is also implemented for the communication of the two open-source solvers. Extensive numerical simulations are performed to validate the capability of SediFoam in the modeling of sediment transport problems. The predictions of various sediment transport regimes, including `flat bed in motion', `small dune' and `vortex dune', are in good agreement of with the experimental results and those obtained by using interface resolved simulations. The capability of the solver in the simulation of sediment transport in the oscillatory boundary layer is also demonstrated. Moreover, this well-validated high-fidelity simulation tool has been used to probe the physics of particle dynamics in self-generated bedforms in various hydraulic conditions. The results obtained by using SediFoam not only bridge the gaps in the experimental results but also help improve the engineering practice in the understanding of sediment transport. By using the particle-resolving simulation results and the insights generated therein, the closure terms in the two-fluid models or hydro-morphodynamic models can be improved, which can contribute to the numerical modeling of sediment transport in engineering scales. / Ph. D.
189

Pneumatic Particulate Collection System Analysis and Design

Bromley II, Michael William 11 July 2012 (has links)
A pneumatic particulate collection system harnesses the energy associated with the release of a compressed gas to transport particulate to a collection chamber. In an effort to improve the efficiency of a previously designed collection system, high speed imaging in conjunction with computational fluid dynamics (CFD) was utilized to highlight design deficiencies. Areas of recirculation within the collection device as well as impingement of the sampling surface were observed through the testing and CFD analysis. The basis of the improved collection system was conceived through research of pneumatic transport and the deficiencies found through testing and simulation. An improved rectangular-duct-styled system was designed in three main stages. A variety of filters used to contain the desired particulate were characterized through testing for use in simulations as well as fluids calculations. The improved system was then analyzed utilizing compressible and incompressible flow calculations and design iterations were conducted with CFD to determine the final parameters. The final design was simulated with a multiphase flow model to examine the particulate entrainment performance. The improved collection system efficiently expanded and developed the gas flow prior to the collection area to employ the particulate entrainment process. The final design was constructed with an additive manufacturing process and experimentally tested to validate the simulations and flow calculations. The testing proved that the final design operated purely on particulate entrainment and collected only the top layer of particles as simulated. The improved collection system eliminated all areas of flow recirculation and impingement of the particle bed to provide a more efficient sampling device. / Master of Science
190

Systematic synthesis of sloppy multicomponent separation sequences

Cheng, Shueh-Hen January 1987 (has links)
An important process-design problem in multicomponent separations is separation sequencing, which is concerned with the selection of the best method and sequence for a separation system. Essentially all of the published work on this subject has been limited to high-recovery or sharp separations, in which each component to be separated appears in one and only one product stream. In industrial practice, however, it is often useful to permit components that are being separated to appear in two or more product streams. This type of separation results in products that have overlapping components and is called nonsharp or sloppy separations. The present work proposes and demonstrates a simple and practical approach to the systematic synthesis of sloppy multicomponent separation sequences. The task of synthesizing sloppy multicomponent separation sequences is inherently more complicated than that of synthesizing sharp separation sequences as identification of infeasible splits and stream splitting, and transformation of infeasible product sets into equivalent feasible product sets are examples of some difficult tasks involved. A successful synthesis strategy calls for the development of an effective and flexible framework for representing the synthesis problem and for analyzing the feasibility of component splits. In this thesis, we propose a "component assignment diagram (CAD)" for problem representation. It is shown that the use of a CAD allows the design engineer to consider many alternative solutions (or sequences) and eliminate all infeasible component splits. Further, a "separation specification table (SST)" is proposed for feasibility analysis. In particular, the use of an SST provides a means to : (i) properly define and specify key and nonkey components; (ii) quickly identify feasible and infeasible splits; (iii) effectively deal with fuel products with unmatched compo- nent specifications; and (iv) systematically consider sloppy separations with multiple split points. One difficult problem arising from the design of multicomponent distillation columns for sloppy separations is to appropriately specify the distributions of non-key components in both overhead and bottoms products. Despite the importance of these specifications, there is very little information available on this subject in the literature. This thesis reports the results from a comparative study of rigorous simulation and shortcut modeling of multicomponent distillation columns for sloppy separations. One objective was to obtain improved quantitative understanding and practical design insights into the characteristics of nonkey distributions through a shortcut modeling based upon the Fenske equation. One method proposed in this work for synthesizing sloppy multicomponent products is a heuristic method that involves a two-phase approach. The first phase is concerned with the feasibility analysis of splits pertinent to a CAD with the aid of an SST. The second phase is to specify systematically a subsequent split by applying heuristics, an activity that involves the sequential application of several "rank-ordered" heuristics. A unifying approach is proposed and demonstrated for the synthesis of sloppy multicomponent product sets. Its objective is to generate equally good initial separation schemes, featuring as many as three characteristically different sequences, including all-sharp, all-sloppy, and both sharp and sloppy (i.e., mixed separation). The proposed methods have been applied to a number of industrial separation problems. The results show that the new methods offer an extremely useful means for design engineers to generate a number of good initial sequences for obtaining sloppy multicomponent product sets prior to the ultimate separator optimization and heat integration. / Ph. D.

Page generated in 0.0448 seconds