Spelling suggestions: "subject:"[een] MULTIPLEXING"" "subject:"[enn] MULTIPLEXING""
541 |
Multiplexing Techniques and Design-Automation Tools for FRET-Enabled Optical ComputingMottaghi, Mohammad January 2014 (has links)
<p>FRET-enabled optical computing is a new computing paradigm that uses the energy of incident photons to perform computation in molecular-scale circuits composed of inter-communicating photoactive molecules. Unlike conventional computing approaches, computation in these circuits does not require any electric current; instead, it relies on the controlled-migration of energy in the circuit through a phenomenon called Förster Resonance Energy Transfer (FRET). This, coupled with other unique features of FRET circuits can enable computing in new domains that are unachievable by the conventional semiconductor-based computing, such as in-cell computing or targeted drug delivery. In this thesis, we explore novel FRET-based multiplexing techniques to significantly increase the storage density of optical storage media. Further, we develop analysis algorithms, and computer-aided design tools for FRET circuits.</p><p>Existing computer-aided design tools for FRET circuits are predominantly ad hoc and specific to particular functionalities. We develop a generic design-automation framework for FRET-circuit optimization that is not limited to any particular functionality. We also show that within a fixed time-budget, the low-speed of Monte-Carlo-based FRET-simulation (MCS) algorithms can have a potentially-significant negative impact on the quality of the design process, and to address this issue, we design and implement a fast FRET-simulation algorithm which is up to several million times faster than existing MCS algorithms. We finally exploit the unique features of FRET-enabled optical computing to develop novel multiplexing techniques that enable orders of magnitude higher storage density compared to conventional optical storage media, such as DVD or Blu-Ray.</p> / Dissertation
|
542 |
Study of efficient link adaptation schemes in wireless orthogonal frequency division multiplexing (OFDM) systemsChoi, Eun Ho 19 October 2009 (has links)
Wireless communication systems require high spectral efficiency and throughput in order to be cost-effective. Link adaptation schemes are known to be a good solution to achieve this goal. However, the necessity of additional information or increased complexity prevents these schemes from being implemented. In this context, research on resource allocation based on different constraints, such as complexity or feedback, is important. The major contribution of this dissertation is the development of three novel techniques to enhance performance in practical implementations of the adaptive OFDM systems. This dissertation first introduces a new multiuser OFDM system to enhance performance in the low SNR regime. In this scheme, multiuser diversity can be efficiently amplified from random power allocation and opportunistic scheduling. Higher spectral efficiency can be achieved without an increase of complexity or feedback amount compared to conventional multiuser OFDM systems using equal power allocation. This dissertation also presents a modified multi-mode power loading scheme. A modified multi-mode power loading scheme can circumvent the limit of current multi-mode power loading schemes by significantly reducing search amount from 2N - 1 to N, where N is the number of subcarriers. Finally, this dissertation has introduced adaptive OFDM systems using channel gain order information in limited feedback environments. Adaptive OFDM systems using the order mapping technique achieve comparable performance to conventional adaptive OFDM systems in terms of bit error rate and average spectral efficiency, while the amount of feedback is significantly reduced. Furthermore, by simply exploiting order mapping and interpolation, the analyzing technique circumvents the practical shortcomings of previous limited feedback techniques for OFDM systems. / text
|
543 |
Deploying Monitoring Trails for Fault Localization in All-optical Networks and Radio-over-Fiber Passive Optical NetworksMaamoun, Khaled M. 24 August 2012 (has links)
Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman’s Problem (CPP) solution and an adapted version of the Traveling Salesman’s Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.
|
544 |
Design and implementation of adaptive baseband predistorter for OFDM nonlinear transmitter : simulation and measurement of OFDM transmitter in presence of RF high power amplifier nonlinear distortion and the development of adaptive digital predistorters based on Hammerstein approachSadeghpour Ghazaany, Tahereh January 2011 (has links)
The objective of this research work is to investigate, design and measurement of a digital predistortion linearizer that is able to compensate the dynamic nonlinear distortion of a High Power Amplifier (PA). The effectiveness of the proposed baseband predistorter (PD) on the performance of a WLAN OFDM transmitter utilizing a nonlinear PA with memory effect is observed and discussed. For this purpose, a 10W Class-A/B power amplifier with a gain of 22 dB, operated over the 3.5 GHz frequency band was designed and implemented. The proposed baseband PD is independent of the operating RF frequency and can be used in multiband applications. Its operation is based on the Hammerstein system, taking into account PA memory effect compensation, and demonstrates a noticeable improvement compared to memoryless predistorters. Different types of modelling procedures and linearizers were introduced and investigated, in which accurate behavioural models of Radio Frequency (RF) PAs exhibiting linear and nonlinear memory effects were presented and considered, based on the Wiener approach employing a linear parametric estimation technique. Three new linear methods of parameter estimation were investigated, with the aim of reducing the complexity of the required filtering process in linear memory compensation. Moreover, an improved wiener model is represented to include the nonlinear memory effect in the system. The validity of the PA modelling approaches and predistortion techniques for compensation of nonlinearities of a PA were verified by several tests and measurements. The approaches presented, based on the Wiener system, have the capacity to deal with the existing trade-off between accuracy and convergence speed compared to more computationally complex behavioural modelling algorithms considering memory effects, such as those based on Volterra series and Neural Networks. In addition, nonlinear and linear crosstalks introduced by the power amplifier nonlinear behaviour and antennas mutual coupling due to the compact size of a MIMO OFDM transmitter have been investigated.
|
545 |
Energy efficient radio frequency system design for mobile WiMax applications : modelling, optimisation and measurement of radio frequency power amplifier covering WiMax bandwidth based on the combination of class AB, class B, and C operationsHussaini, Abubakar Sadiq January 2012 (has links)
In today's digital world, information and communication technology accounts for 3% and 2% of the global power consumption and CO2 emissions respectively. This alarming figure is on an upward trend, as future telecommunications systems and handsets will become even more power hungry since new services with higher bandwidth requirements emerge as part of the so called 'future internet' paradigm. In addition, the mobile handset industry is tightly coupled to the consumer need for more sophisticated handsets with greater battery lifetime. If we cannot make any significant step to reducing the energy gap between the power hungry requirements of future handsets, and what battery technology can deliver, then market penetration for 4G handsets can be at risk. Therefore, energy conservation must be a design objective at the forefront of any system design from the network layer, to the physical and the microelectronic counterparts. In fact, the energy distribution of a handset device is dominated by the energy consumption of the RF hardware, and in particular the power amplifier design. Power amplifier design is a traditional topic that addresses the design challenge of how to obtain a trade-off between linearity and efficiency in order to avoid the introduction of signal distortion, whilst making best use of the available power resources for amplification. However, the present work goes beyond this by investigating a new line of amplifiers that address the green initiatives, namely green power amplifiers. This research work explores how to use the Doherty technique to promote efficiency enhancement and thus energy saving. Five different topologies of RF power amplifiers have been designed with custom-made signal splitters. The design core of the Doherty technique is based on the combination of a class B, class AB and a class C power amplifier working in synergy; which includes 90-degree 2-way power splitter at the input, quarter wavelength transformer at the output, and a new output power combiner. The frequency range for the amplifiers was designed to operate in the 3.4 - 3.6 GHz frequency band of Europe mobile WiMAX. The experimental results show that 30dBm output power can be achieved with 67% power added efficiency (PAE) for the user terminal, and 45dBm with 66% power added efficiency (PAE) for base stations which marks a 14% and 11% respective improvement over current stateof- the-art, while meeting the power output requirements for mobile WiMAX applications.
|
546 |
Nonlinear dynamics of photonic components. Chaos cryptography and multiplexing / Dynamique non-linéaire de composants photoniques. Cryptographie par chaos et multiplexageRontani, Damien 16 November 2011 (has links)
L’application du concept de synchronisation appliqué aux composants photoniques non-linéaires a permis l’avènement des communications chaotiques optiques. Les systèmes optoélectronique dans ces chaines de transmission ont déjà démontré leur potentiel en termes de sécurité additionnelle au niveau de la couche physique des réseaux optiques. Cependant, la quantification du niveau de sécurité et l’absence d’un cadre déduit aux aspects multi-utilisateurs (techniques de multiplexage spécifiques) ont fortement freiné le déploiement de ces techniques à large échelle. La recherche effectuée dans le cadre de cette thèse a contribué à l’avancement de ces deux questions ouvertes. Dans premier temps, nous nous sommes intéressés à la sécurité d’une classe de générateur optique particulière: les lasers à semi-conducteur à cavité externe (ECSL). Nous proposons d’attaquer le système dans le contexte le plus difficile, celui dans lequel aucune information n’est a priori disponible. La sortie du laser chaotique (l’intensité optique) est enregistrée, et les séries temporelles obtenues sont analysées. La sécurité est comprise dans ce contexte comme étant la quantité d’information sur les paramètres du système (analogue d’une clé dans les systèmes de cryptage conventionnels) et/ou la fonction non-linéaire du système (l’équivalent de l’algorithme de cryptage). Un ECSL est un système possédant un délai (aussi appelé retard), un paramètre critique pour la sécurité. Nous avons étudié l’influence des paramètres ajustable de l’ECSL chaotique sur l’identification du délai: l’intensité de la rétroaction optique, la valeur du délai, et le courant alimentant le laser (aussi appelé courant de pompe). Dans un deuxième temps nous interprétons ces résultats sur la base des régimes dynamiques précédent l’apparition du chaos dans l’ECSL. Nous avons proposé par la suite une architecture pour multiplexer des signaux chaotiques optiques générés par des ECSL. Nous démontrons la supériorité de cette approche en terme d’efficacité spectrale relativement aux méthodes de multiplexage en longueur d’onde (wavelength division multiplexing, WDM) appliquées aux communications optiques par chaos (aussi connues sous le nom de chaotic WDM ). Nous avons adapté un concept fondamental de la théorie de la synchronisation: la décomposition active-passive (APD) en utilisant des composants optiques simples. Nous démontrons la possibilité de multiplexer et démultiplexage de deux signaux chaotiques optiques par synchronisation (en utilisant deux émetteurs et deux récepteurs). Les performances et la robustesse de cette structure sont analysées ainsi que la possibilité de crypter et de décrypter des messages. Après cela, nous avons utilisé une classe de systèmes optoélectroniques différente de celle correspondant au deux premières sections, avec l’objectif d’utiliser un seul oscillateur chaotique pour encoder plusieurs messages au lieu de considérer un oscillateur par message. A cette fin, nous avons modifié une structure d’un générateur de chaos électro-optique existant dans la littérature en lui ajoutant plusieurs boucles de rétroactions non-linéaires. Chacune d’elle est utilisée pour l’encryptage d’un message, réalisée, par exemple, par la modulation du gain non-linéaire de la boucle. Nous avons analysé différentes configurations possibles, ainsi que les propriétés des signaux chaotiques générés au sein de chaque boucle et utilisés pour transporter les différents messages. Nous avons expliqué dans quelle mesure l’orthogonalité (ou décorrélation) entre les différents signaux peut être utilisée à notre avantage pour dériver des équations de décodage de faible complexité algorithmique (comme fonction du nombre d’utilisateurs). Enfin, nous analysons comment certains phénomènes d’interférences entre signaux porteurs peuvent être pris en compte afin de toujours permettre la récupération des messages. / With the rapid development of optical communications and the increasing amount of data exchanged, it has become utterly important to provide effective architectures to protect sensitive data. The use of chaotic optoelectronic devices has already demonstrated great potential in terms of additional computational security at the physical layer of the optical network. However, the determination of the security level and the lack of a multi-user framework are two hurdles which have prevented their deployment on a large scale. In this thesis, we propose to address these two issues. First, we investigate the security of a widely used chaotic generator, the external cavity semiconductor laser (ECSL). This is a time-delay system known for providing complex and high-dimensional chaos, but with a low level of security regarding the identification of its most critical parameter, the time delay. We perform a detailed analysis of the influence of the ECSL parameters to devise how higher levels of security can be achieved and provide a physical interpretation of their origin. Second, we devise new architectures to multiplex optical chaotic signals and realize multi-user communications at high bit rates. We propose two different approaches exploiting known chaotic optoelectronic devices. The first one uses mutually coupled ECSL and extends typical chaos-based encryption strategies, such as chaos-shift keying (CSK) and chaos modulation (CMo). The second one uses an electro-optical oscillator (EOO) with multiple delayed feedback loops and aims first at transposing coded-division multiple access (CDMA) and then at developing novel strategies of encryption and decryption, when the time-delays of each feedback loop are time- dependent.
|
547 |
Design and Development of Nanoconjugates for NanotechnologyQuach, Ashley Dung 20 May 2011 (has links)
Nanotechnology builds devices from the bottom up with atomic accuracy. Among the basic nano-components to fabricate such devices, semiconductor nanoparticle quantum dots (QDs), metal nanocrystals, proteins, and nucleic acids have attracted most interests due to their potential in optical, biomedical, and electronic areas. The major objective of this research was to prepare nano-components in order to fabricate functional nano-scale devices. This research consisted of three projects. In the first two projects, we incorporated two desirable characteristics of QDs, which are their abilities to serve as donors in fluorescence energy transfer (FRET) and surface energy transfer (SET) as well as to do multiplexing, to engineer QD-based nanoconjugates for optical and biomedical applications. Immobilizing luminescent semiconductor CdSe/ZnS QDs to a solid platform for QD-based biosensors offers advantages over traditional solution-based assays. In the first project, we designed highly sensitive CdSe/ZnS QD SET-based probes using gold nanoparticles (AuNPs) as FRET acceptors on polystyrene (PS) microsphere surfaces. The emission of PS-QD was significantly quenched and restored when the AuNPs were attached to and then removed from the surface. The probes were sensitive enough to analyze signals from a single bead and for use in optical applications. The new PS-QD-AuNP SET platform opens possibilities to carry out both SET and FRET assays in microparticle-based platforms and in microarrays. In the second project, we applied the QD-encoded microspheres in FRET-based analysis for bio-applications. QDs and Alexa Fluor 660 (A660) fluorophores are used as donors and acceptors respectively via a hairpin single stranded DNA. FRET between QD and A660 on the surface of polystyrene microspheres resulted in quenching of QD luminescence and increased A660 emission. QD emission on polystyrene x microspheres was restored when the targeted complementary DNA hybridized the hairpin strand and displaced A660 away from QDs. The third project involved fabrication of different nanoconjugates via self-assembly of template-based metal nanowires and metal nanoparticles using oligonucleotides as linkers. These nanoconjugates can serve as building blocks in nano-electronic circuits. The template method restricted the oligonucleotides attachment to the tip of the nanowires. Nanowires tagged with hybridizable DNA could connect to complementary DNA-modified metal crystals in a position-specific manner.
|
548 |
Conception, validation et mise en oeuvre d’une architecture de stockage de données de très haute capacité basée sur le principe de la photographie Lippmann / Conception, validation and implementation of a new architecture of high capacity optical storage based on Lippmann's photographyContreras Villalobos, Kevin 04 February 2011 (has links)
Le stockage de données par holographie suscite un intérêt renouvelé. Il semble bien placé pour conduire à une nouvelle génération de mémoires optiques aux capacités et débits de lecture bien supérieurs à ceux des disques optiques actuels basés sur l’enregistrement dit surfacique. Dans ce travail de thèse, nous proposons une nouvelle architecture de stockage optique de données qui s’inspire du principe de la photographie interférentielle de Lippmann. Les informations y sont inscrites dans le volume du matériau d’enregistrement sous la forme de pages de données par multiplexage en longueur d’onde en exploitant la sélectivité de Bragg. Cette technique, bien que très voisine de l’holographie, n’avait jamais été envisagée pour le stockage à hautes capacités. L’objectif de la thèse a été d’analyser cette nouvelle architecture afin de déterminer les conditions pouvant conduire à de très hautes capacités. Cette analyse s’est appuyée sur un outil de simulation numérique des processus de diffraction en jeu dans cette mémoire interférentielle. Elle nous a permis de définir deux conditions sous lesquelles ces hautes capacités sont atteignables. En respectant ces conditions, nous avons conçu un démonstrateur de mémoire dit de « Lippmann » et avons ainsi démontré expérimentalement que la capacité est bien proportionnelle à l’épaisseur du matériau d’enregistrement. Avec une telle architecture, des capacités de l’ordre du Téraoctet sont attendues pour des disques de 12 cm de diamètre. / Nowadays, the holographic data storage presents a renewed interest. It seems well placed to lead a new generation of optical storage capacity and playback speeds much higher than current optical discs based on the recording onto a surface. In this thesis, we propose a new architecture for optical data storage that is based on the principle of Lippmann photography interferential. Information are included in the volume of the recording material in the form of pages of data multiplexing in wavelength by exploiting the Bragg selectivity. This technique, although very similar to holography, had never been considered for high storage capacities. The aim of the thesis was to analyze this new architecture to determine the conditions that can lead to very high capacities. This analysis was based on a numerical simulation tool of diffraction process involved in this memory interferential. It allowed us to define two conditions under which these high capacities are achievable. In accordance with these conditions, we developed a demonstrator called "Lippmann’s memory" and have thus demonstrated experimentally that the capacity is proportional to the thickness of the recording material. With such an architecture, Terabyte disks of 12 cm in diameter are expected.
|
549 |
[en] CHANNEL ESTIMATION OVER POWER LINE COMMUNICATIONS SYSTEMS / [pt] ESTIMAÇÃO DE CANAL EM SISTEMAS DE COMUNICAÇÃO SOBRE LINHAS DE POTÊNCIARENATA BRAZ FALCAO DA COSTA 25 March 2008 (has links)
[pt] A utilização das linhas de potência para fins de
comunicação vem recebendo grande atenção nos últimos anos,
principalmente devido a grande demanda por
serviços de telecomunicações. A grande virtude é que as
linhas de potência para comunicação apresentam uma solução
sem a necessidade de nova fiação. Além disso,
apresentam saída de potência disponível em todos os cômodos
de uma residência,
onde o terminal de comunicação possa ser usado, são de
fácil instalação e acima de
tudo apresentam custo reduzido. Sendo assim a comunicação
através de linhas de
potência vem se mostrando uma solução viável na oferta de
serviços de
telecomunicações. Esta tese investigou os sistemas PLC no
que diz respeito à
estimação do canal. Foi desenvolvido um método paramétrico
de estimação do canal
PLC baseado no algoritmo EM (Expectation Maximization). Foi
feita a avaliação de
desempenho combinando modulação OFDM (Orthogonal Frequency
Division
Multiplexing), estimação do canal PLC e equalização, sendo
utilizado como
referencias os equalizadores ZF (Zero Forcing) e MMSE
(Minimum Mean Square
Error). / [en] The powerline communications systems have been receiving
increasing
attention in last few years. Power line communications
presents a no new wires
solution with the additional advantages of ubiquitous node
availability, easy
installation, and cost effectiveness. This thesis
investigation the powerline estimation
channel. It was presented parametric channel estimation
method using EM
(Expectation Maximization) algorithm. The performance using
OFDM (Orthogonal
Frequency Division Multiplexing), PLC Channel estimation
and equalization was
availability. The performance was studied using two
equalization techniques Zero-
Forcing and Minimum Mean Square Error.
|
550 |
Stochastic optimization of energy for multi-user wireless networks over fading channelsUnknown Date (has links)
Wireless devices in wireless networks are powered typically by small batteries that are not replaceable nor recharged in a convenient way. To prolong the operating lifetime of networks, energy efficiency is indicated as a critical issue and energy-efficient resource allocation designs have been extensively developed. We investigated energy-efficient schemes that prolong network operating lifetime in wireless sensor networks and in wireless relay networks. In Chapter 2, the energy-efficient resource allocation that minimizes a general cost function of average user powers for small- or medium-scale wireless sensor networks, where the simple time-division multiple-access (TDMA) is adopted as the multiple access scheme. A class of Ç-fair cost-functions is derived to balance the tradeoff between efficiency and fairness in energy-efficient designs. Based on such cost functions, optimal channel-adaptive resource allocation schemes are developed for both single-hop and multi-hop TDMA sensor networks. In Chapter 3, optimal power control methods to balance the tradeoff between energy efficiency and fairness for wireless cooperative networks are developed. It is important to maximize power efficiency by minimizing power consumption for a given quality of service, such as the data rate; it is also equally important to evenly or fairly distribute power consumption to all nodes to maximize the network life. The optimal power control policy proposed is derived in a quasi-closed form by solving a convex optimization problem with a properly chosen cost-function. To further optimize a wireless relay network performance, an orthogonal frequency division multiplexing (OFDM) based multi-user wireless relay network is considered in Chapter 4. / In the OFDM approach, each subcarrier is dynamically assigned to a source- destination link, and several relays assist communication between pairs of source-destination over their assigned subcarriers. Using a class of Ç-fair cost-functions to balance the tradeoff between energy efficiency and fairness, jointly with optimal subcarrier and power allocation schemes at the relays. Relevant algorithms are derived in quasi-closed form. Lastly, the proposed energy-efficient schemes are summarized and future work is discussed in Chapter 5. / by Di Wang. / Thesis (Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
|
Page generated in 0.0648 seconds