Spelling suggestions: "subject:"[een] MULTIPLEXING"" "subject:"[enn] MULTIPLEXING""
571 |
Highly Efficient New Methods Of Channel Estimation For Ofdm SystemsCuruk, Selva Muratoglu 01 May 2008 (has links) (PDF)
In the first part, the topic of average channel capacity for Orthogonal Frequency Division Multiplexing (OFDM) under Rayleigh, Rician, Nakagami-m, Hoyt, Weibull and Lognormal fading is addressed. With the assumption that channel state information is known, we deal with a lower bound for the capacity and find closed computable forms for Rician fading without diversity and with Maximum Ratio Combining diversity at the receiver. Approximate expressions are also provided for the capacity lower bound in the case of high Signal to Noise Ratio.
This thesis presents two simplified Maximum A Posteriori (MAP) channel estimators to be used in OFDM systems under frequency selective slowly varying Rayleigh fading. Both estimators use parametric models, where the first model assumes exponential frequency domain correlation while the second model is based on the assumption of exponential power delay profile. Expressions for the mean square error of estimations are derived and the relation between the correlation of subchannel taps and error variance is investigated. Dependencies of the proposed estimators&rsquo / performances on the model parameter and noise variance estimation errors are analyzed. We also provide approximations on the estimators&rsquo / algorithms in order to make the estimators practical. Finally, we investigate SER performance of the simplified MAP estimator based on exponential power delay profile assumption used for OFDM systems with QPSK modulation. The results indicate that the proposed estimator performance is always better than that of the ML estimator, and as the subchannel correlation increases the performance comes closer to that of perfectly estimated channel case.
|
572 |
LDPC Coded OFDM-IDMA SystemsLu, Kuo-sheng 05 August 2009 (has links)
Recently, a novel technique for multi-user spread-spectrum mobile systems, the called interleave-division multiple-access (IDMA) scheme, was proposed by L. Ping etc. The advantage of IDMA is that it inherits many special features from code-division multiple-access (CDMA) such as diversity against fading and mitigation of the other-cell user interference. Moreover, it¡¦s capable of employing a very simple chip-by-chip iterative multi-user detection strategy. In this thesis, we investigate the performance of combining IDMA and orthogonal frequency-division multiplexing (OFDM) scheme. In order to improve the bit error rate performance, we applied low-density parity-check (LDPC) coding to the proposed scheme, named by LDPC Coded OFDM-IDMA Systems. Based on the aid of iterative multi-user detection algorithm, the multiple-access interference (MAI) and inter-symbol interference (ISI) could be canceling efficiently. In short, the proposed scheme provides an efficient solution to high-rate multiuser communications over multipath fading channels.
|
573 |
A PAPR Reduction Scheme for SFBC MIMO-OFDM SystemsTsai, Kun-Han 11 August 2009 (has links)
In multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system which was used space frequency block coding (SFBC) method. It order to reduce the peak-to-average power ratio in several transmit antennas. We proposed two new architectures to simply the computational complexity on transmitter. According to the characteristics of SFBC structure which have M transmitter antennas. We can decomposed the interleaving subcarrier groups by used conversion vector to circular convolution with signal vector and shrink the inverse fast Fourier transform (IFFT) points. Therefore it can do the SFBC coding operation in time domain. By using combination of different cyclic shifts and phase rotations in U subcarrier groups can generate the P candidate signals. And it wouldn¡¦t increase the number of IFFT. The proposed transmitter architectures can improve the major drawback of high computational complexity in traditional selected mapping (SLM). The traditional SLM generate the P candidate signals needs MP IFFT units. Then in the condition of lose a little PAPR reduction performance, we can save the most of computational complexity.
|
574 |
Novel Frequency Domain DFE with Oblique Projection for CP Free ST-BC MIMO OFDM SystemWu, Chih-wei 18 August 2009 (has links)
This thesis present a new receiver framework for the cyclic-prefix free (CP-free) MIMO-OFDM system, equipped with the space-time block coded (ST-BC) uplink transmission over (slowly) time varying multipath channels. Usually, without CP in the OFDM system the inter-carrier interference (ICI) could not be removed, effectively, at the receiver, when the inter-symbol-interference (ISI) has to be taken into account.
In this thesis, by exploiting the spatial and frequency resources, we propose a novel frequency-domain decision-feedback equalizer, associated with the oblique projection (OB), to combat the effects of ISI and ICI, simultaneously. The OB is a non-orthogonal projection and is very useful to deal with the structure noise (e.g., the ISI term). From computer simulations, we observe that the performance of propose scheme can perform very close to the conventional CP-based MMO-OFDM with the ST-BC.
|
575 |
Channel estimation and signal detection for wireless relayMa, Jun 15 November 2010 (has links)
Wireless relay can be utilized to extend signal coverage, achieve spatial diversity by user cooperation, or shield mobile terminals from adverse channel conditions over the direct link. In a two-hop multi-input-multi-output (MIMO) amplify-and-forward (AF) relay system, the overall noise at the destination station (DS) consists of the colored noise forwarded from the relay station (RS) and the local white noise. We propose blind noise correlation estimation at the DS by utilizing statistics of the broadband relay channel over the RS-DS hop, which effectively improves signal detection at the DS. For further
performance improvement, we also propose to estimate the two cascaded MIMO relay channels over the source-RS and the RS-DS links at the DS based on the overall channel between the source and the DS and the amplifying matrix applied at the RS. To cancel cross-talk interference at a channel-reuse-relay-station (CRRS), we utilize the random forwarded signals of the CRRS as equivalent pilots for local coupling channel estimation and achieve a much higher post signal-to-interference ratio (SIR) than the conventional
dedicated pilots assisted cancellers without causing any in-band interference at the DS. When an OFDM-based RS is deployed on a high-speed train to shield mobile terminals from the high Doppler frequency over the direct link, inter-subchannel interference (ICI) mitigation is required at the RS. By utilizing statistics of the channel between the base station and the train, we develop both full-rate and reduced-rate OFDM transmission with inherent ICI self-cancellation via transmit and/or receive preprocessing, which achieve significant performance improvement over the existing ICI self-cancellation schemes.
|
576 |
Communications with chaotic optoelectronic systems - cryptography and multiplexingRontani, Damien 20 October 2011 (has links)
With the rapid development of optical communications and the increasing amount of data exchanged, it has become utterly important to provide effective ar- chitectures to protect sensitive data. The use of chaotic optoelectronic devices has already demonstrated great potential in terms of additional computational security at the physical layer of the optical network. However, the determination of the security level and the lack of a multi-user framework are two hurdles which have prevented their deployment on a large scale. In this thesis, we propose to address these two issues.
First, we investigate the security of a widely used chaotic generator, the external cavity semiconductor laser (ECSL). This is a time-delay system known for providing complex and high-dimensional chaos, but with a low level of security regarding the identification of its most critical parameter, the time delay. We perform a detailed analysis of the influence of the ECSL parameters to devise how higher levels of security can be achieved and provide a physical interpretation of their origin.
Second, we devise new architectures to multiplex optical chaotic signals and realize multi-user communications at high bit rates. We propose two different approaches exploiting known chaotic optoelectronic devices. The first one uses mutually cou- pled ECSL and extends typical chaos-based encryption strategies, such as chaos-shift keying (CSK) and chaos modulation (CMo). The second one uses an electro-optical oscillator (EOO) with multiple delayed feedback loops and aims first at transpos- ing coded-division multiple access (CDMA) and then at developing novel strategies
of encryption and decryption, when the time-delays of each feedback loop are time- dependent.
|
577 |
Low Power LO Generation Based On Frequency Multiplication TechniquePandey, Jagadish Narayan 07 1900 (has links)
TO achieve high level of integration in order to reduce cost, heterodyne architecture has made way for low-IF and zero-IF (direct conversion) receiver architectures. However, a very serious issue in implementing both zero and low-IF receiver is of local oscillator (LO) pulling. Another challenge is on-chip generation of high-precision quadrature LO signals for image-rejection. We have addressed both these issues in this thesis. Regarding the first problem, we have developed a lowpower frequency multiplication technique which uses a low frequency ring oscillator and multiplies its frequency in power e cient way to generate the desired frequency. We then use this differential LO signal to generate high-precision quadrature phases by using polyphase filter and an injection-locked quadrature oscillator.
Design examples are presented for 2.4 GHz band of IEEE 802.15.4 standard which is a low-data rate WPAN standard. The standard o ers relaxed performance specifications in order to help achieve low power of operation.
Contributions in the thesis
• The problem of local oscillator (LO) pulling can be addressed by running LO
at a much reduced frequency and use a frequency multiplier (FM) to generate
the desired frequency. Also, use of low-frequency LO saves power in VCO and helps eliminate first few dividers leading to significant power savings. In addition, the entire frequency synthesizer can be run at a lower supply voltage saving additional power.
The frequency multiplier involves combining edges from the lower frequency ring oscillator. It improves upon the prior work by proposing a new lower-power edge-combiner. The overall power is reduced by exploiting the relaxed phase noise specification of IEEE 802.15.4 standard. Simulations using SpectreRF show that the circuit consumes only 550 オW of power in 0.13 オm RF-CMOS technology with 1.2 V supply voltage, and provides 950 VP-P sinusoidal output with phase noise of -85.5 dBc/Hz at 1 MHz offset.
• An injection-locking based quadrature desensitization circuit is designed for
precision quadrature generation. The differential (two phase) output of the
frequency multiplier is fed to a polyphase filter to generate nearly quadrature
signals. Output of polyphase filter is in turn fed to the desensitizer circuit to
obtain high-precision quadrature signals. Designed for 2.4 GHz band in 0.13 µm RF-CMOS technology, it achieves a phase error of 0.5 for 1% mismatch in LC tanks. It achieves a phase noise of -84.3 dBc/Hz at 1 MHz o set and provides quadrature sinusoids of 475 mV amplitude while consuming 1.56 mW of power.
• We have analyzed the popular cross-coupled LC-VCOs to generate quadrature sinusoids. In practical LC-oscillators built using low/moderate quality factor on-chip inductors, the actual frequency of oscillation is a little less than 1/2pvLC .
This is known as Groszkowski effect. On the other hand, in quadrature oscillator
topologies, consisting of two, cross-coupled, negative resistance LC-VCOs using
parallel coupling transistors, an upward shift in frequency of oscillation from the
free-running frequency of each LC-VCO is observed. This is because in order to satisfy the Barkhausen’s criteria, the LC-tanks have to operate at a frequency
away from the frequency of resonance. This e ect called as quadrature detuning effect results in higher phase noise and reduced amplitude.
We have shown that the old treatment given in literature is quite inaccurate for
practical LC oscillators that are built using low/mo derate Q on-chip inductors.
Also the prior work ignores Groszkowski effect which could be significant for low
Q LC tanks. We have provided simple, accurate and closed-form expressions
of associated frequency-shifts and amplitude of oscillation including both the effects. Our results show excellent match with results obtained from SpectreRF and Matlab simulations.
|
578 |
Interference Management For Vector Gaussian Multiple Access ChannelsPadakandla, Arun 03 1900 (has links)
In this thesis, we consider a vector Gaussian multiple access channel (MAC) with users demanding reliable communication at specific (Shannon-theoretic) rates. The objective is to assign vectors and powers to these users such that their rate requirements are met and the sum of powers received is minimum.
We identify this power minimization problem as an instance of a separable convex optimization problem with linear ascending constraints. Under an ordering condition on the slopes of the functions at the origin, an algorithm that determines the optimum point in a finite number of steps is described. This provides a complete characterization of the minimum sum power for the vector Gaussian multiple access channel. Furthermore, we prove a strong duality between the above sum power minimization problem and the problem of sum rate maximization under power constraints.
We then propose finite step algorithms to explicitly identify an assignment of vectors and powers that solve the above power minimization and sum rate maximization problems. The distinguishing feature of the proposed algorithms is the size of the output vector sets. In particular, we prove an upper bound on the size of the vector sets that is independent of the number of users.
Finally, we restrict vectors to an orthonormal set. The goal is to identify an assignment of vectors (from an orthonormal set) to users such that the user rate requirements is met with minimum sum power. This is a combinatorial optimization problem. We study the complexity of the decision version of this problem. Our results indicate that when the dimensionality of the vector set is part of the input, the decision version is NP-complete.
|
579 |
Multiple antenna downlink: feedback reduction, interference suppression and relay transmissionTang, Taiwen 28 August 2008 (has links)
Not available / text
|
580 |
Design and performance analysis of distributed space time coding schemes for cooperative wireless networksOwojaiye, Gbenga Adetokunbo January 2012 (has links)
In this thesis, space-time block codes originally developed for multiple antenna systems are extended to cooperative multi-hop networks. The designs are applicable to any wireless network setting especially cellular, adhoc and sensor networks where space limitations preclude the use of multiple antennas. The thesis first investigates the design of distributed orthogonal and quasi-orthogonal space time block codes in cooperative networks with single and multiple antennas at the destination. Numerical and simulation results show that by employing multiple receive antennas the diversity performance of the network is further improved at the expense of slight modification of the detection scheme. The thesis then focuses on designing distributed space time block codes for cooperative networks in which the source node participates in cooperation. Based on this, a source-assisting strategy is proposed for distributed orthogonal and quasi-orthogonal space time block codes. Numerical and simulation results show that the source-assisting strategy exhibits improved diversity performance compared to the conventional distributed orthogonal and quasi-orthogonal designs.Motivated by the problem of channel state information acquisition in practical wireless network environments, the design of differential distributed space time block codes is investigated. Specifically, a co-efficient vector-based differential encoding and decoding scheme is proposed for cooperative networks. The thesis then explores the concatenation of differential strategies with several distributed space time block coding schemes namely; the Alamouti code, square-real orthogonal codes, complex-orthogonal codes, and quasiorthogonal codes, using cooperative networks with different number of relay nodes. In order to cater for high data rate transmission in non-coherent cooperative networks, differential distributed quasi-orthogonal space-time block codes which are capable of achieving full code-rate and full diversity are proposed. Simulation results demonstrate that the differential distributed quasi-orthogonal space-time block codes outperform existing distributed space time block coding schemes in terms of code rate and bit-error-rate performance. A multidifferential distributed quasi-orthogonal space-time block coding scheme is also proposed to exploit the additional diversity path provided by the source-destination link.A major challenge is how to construct full rate codes for non-coherent cooperative broadband networks with more than two relay nodes while exploiting the achievable spatial and frequency diversity. In this thesis, full rate quasi-orthogonal codes are designed for noncoherent cooperative broadband networks where channel state information is unavailable. From this, a generalized differential distributed quasi-orthogonal space-frequency coding scheme is proposed for cooperative broadband networks. The proposed scheme is able to achieve full rate and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of the proposed scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, sufficient conditions are derived for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity. In order to exploit the additional diversity paths provided by the source-destination link, a novel multidifferential distributed quasi-orthogonal space-frequency coding scheme is proposed. The overall objective of the new scheme is to improve the quality of the detected signal at the destination with negligible increase in the computational complexity of the detector.Finally, a differential distributed quasi-orthogonal space-time-frequency coding scheme is proposed to cater for high data rate transmission and improve the performance of noncoherent cooperative broadband networks operating in highly mobile environments. The approach is to integrate the concept of distributed space-time-frequency coding with differential modulation, and employ rotated constellation quasi-orthogonal codes. From this, we design a scheme which is able to address the problem of performance degradation in highly selective fading environments while guaranteeing non-coherent signal recovery and full code rate in cooperative broadband networks. The coding scheme employed in this thesis relaxes the assumption of constant channel variation in the temporal and frequency dimensions over long symbol periods, thus performance degradation is reduced in frequencyselective and time-selective fading environments. Simulation results illustrate the performance of the proposed differential distributed quasi-orthogonal space-time-frequency coding scheme under different channel conditions.
|
Page generated in 0.0442 seconds