• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 208
  • 179
  • 53
  • 27
  • 20
  • 12
  • 8
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 945
  • 945
  • 417
  • 235
  • 189
  • 155
  • 155
  • 149
  • 140
  • 124
  • 122
  • 110
  • 87
  • 83
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Approximation and interpolation employing divergence-free radial basis functions with applications

Lowitzsch, Svenja 30 September 2004 (has links)
Approximation and interpolation employing radial basis functions has found important applications since the early 1980's in areas such as signal processing, medical imaging, as well as neural networks. Several applications demand that certain physical properties be fulfilled, such as a function being divergence free. No such class of radial basis functions that reflects these physical properties was known until 1994, when Narcowich and Ward introduced a family of matrix-valued radial basis functions that are divergence free. They also obtained error bounds and stability estimates for interpolation by means of these functions. These divergence-free functions are very smooth, and have unbounded support. In this thesis we introduce a new class of matrix-valued radial basis functions that are divergence free as well as compactly supported. This leads to the possibility of applying fast solvers for inverting interpolation matrices, as these matrices are not only symmetric and positive definite, but also sparse because of this compact support. We develop error bounds and stability estimates which hold for a broad class of functions. We conclude with applications to the numerical solution of the Navier-Stokes equation for certain incompressible fluid flows.
422

Numerische Untersuchung zur instationären Kutta-Bedingung

Bebber, Guido van 20 June 2000 (has links)
No description available.
423

Simulation de fluide avec des noyaux constants par morceaux

Samson, Etienne January 2014 (has links)
La simulation de fluide fait l???objet de recherches actives en infographie. Largement utilis??e dans le domaine des jeux vid??os ou de l???animation, elle permet de simuler le comportement des liquides, des gaz et autres ph??nom??nes pouvant ??tre apparent??s ?? un fluide. Pour cela, la simulation de fluide dispose d???outils de calcul num??riques adapt??s, permettant de produire des animations visuellement r??alistes pour un temps de calcul raisonnable. Ce m??moire d??crit les deux principales approches utilis??es en simulation de fluide : l???approche eul??rienne et l???approche lagrangienne, ainsi que certains outils num??riques associ??s, que sont les diff??rences finies et les fonctions de lissage. Chaque approche et chaque outil num??rique poss??de ses avantages et ses inconv??nients. Les noyaux constants par morceaux constituent un nouvel outil de calcul num??rique et ouvrent de nouvelles possibilit??s ?? la simulation de fluide. Ils seront ??tudi??s en d??tails puis int??gr??s dans une simulation de fluide eul??rienne. L???atout notable qu???apportent les noyaux constants par morceaux est la possibilit?? d???augmenter la pr??cision des calculs l?? o?? cela est jug?? n??cessaire dans la simulation. En augmentant la pr??cision des calculs aux endroits cl??s, o?? sont susceptibles d???apparaitre des effets visuellement attrayants comme les tourbillons ou les remous, nous am??liorons la qualit?? des animations.
424

Efficient neural networks for prediction of turbulent flow

Zhao, Wei 12 1900 (has links)
No description available.
425

IMPLEMENTATION AND VALIDATION OF THE HYBRID TURBULENCE MODELS IN AN UNSTRUCTURED GRID CODE

Panguluri, Sri S. 01 January 2007 (has links)
Since its introduction in 1997, the use of Detached Eddy Simulation (DES) and similar hybrid turbulence techniques has become increasingly popular in the field of CFD. However, with increased use some of the limitations of the DES model have become apparent. One of these is the dependence of DES on grid construction, particularly regarding the point of transition between the Reynolds-Averaged Navier-Stokes and Large Eddy Simulation models. An additional issue that arises with unstructured grids is the definition of the grid spacing in the implementation of a DES length scale. To lay the ground work to study these effects the Spalart-Allmaras one-equation turbulence model, SA based DES hybrid turbulence model, and the Scale Adaptive Simulation hybrid turbulence model are implemented in an unstructured grid CFD code, UNCLE. The implemented SA based DES model is validated for flow over a three-dimensional circular cylinder for three different turbulent Reynolds numbers. Validation included studying the pressure, skin friction coefficient, centerline velocity distributions averaged in time and space. Tools to output the mean velocity profiles and Reynolds stresses were developed. A grid generation code was written to generate a two/three dimensional circular cylinder grid to simulate flow over the cylinder in UNCLE. The models implemented and validated, and the additional tools mentioned will be used in the future.
426

Ondelettes pour la prise en compte de conditions aux limites en turbulence incompressible

Kadri Harouna, Souleymane 13 September 2010 (has links) (PDF)
Ce travail de thèse concerne les méthodes numériques à base d'ondelettes pour la simulation de la turbulence incompressible. L'objectif principal est la prise en compte de conditions aux limites physiques dans la résolution des équations de Navier-Stokes. Contrairement aux travaux précédents où la <i>vorticité</i> était décomposée sur base d'ondelettes <i>classiques</i>, le point de vue qui est adopté ici vise à calculer le champ de <i>vitesse</i> de l'écoulement sous la forme d'une série d'ondelettes à divergence nulle. On est alors dans le cadre des équations de Navier-Stokes incompressibles en formulation <i>vitesse-pression</i>, pour lesquelles les conditions aux limites sur la <i>vitesse</i> s'écrivent explicitement, ce qui diffère de la formulation <i>vitesse-tourbillon</i>. Le principe de la méthode développée dans cette thèse consiste à injecter directement les conditions aux limites sur la base d'ondelettes. Ce travail prolonge la thèse de E. Deriaz réalisée dans le cas périodique. La première partie de ce travail a donc été la définition et la mise en œuvre de nouvelles bases d'ondelettes à divergence nulle ou à rotationnel nul sur $[0,1]^n$, permettant la prise en compte de conditions aux limites, à partir des travaux originaux de P. G. Lemarié-Rieusset, K. Urban, E. Deriaz et V. Perrier. Dans une deuxième partie, des méthodes numériques efficaces utilisant ces nouvelles ondelettes sont proposées pour résoudre différents problèmes classiques : équation de la chaleur, problème de Stokes et calcul de la décomposition de Helmholtz-Hodge en non périodique. L'existence d'algorithmes rapides associés rend les méthodes compétitives. La dernière partie est consacrée à la définition de deux nouveaux schémas de résolution des équations de Navier-Stokes incompressibles par ondelettes, qui utilisent les ingrédients précédents. Des expériences numériques menées pour la simulation d'écoulement en cavité entraînée en dimension deux ou le problème de la reconnection de tubes de vortex en dimension trois montrent le fort potentiel des algorithmes développés.
427

Simulation numérique d'écoulements diphasiques par décomposition de domaines

Dao, Thu Huyên 27 February 2013 (has links) (PDF)
Ce travail a été consacré à la simulation numérique des équations de la mécanique des fluides par des méthodes de volumes finis implicites. Tout d'abord, nous avons étudié et mis en place une version implicite du schéma de Roe pour les écoulements monophasiques et diphasiques compressibles. Grâce à la méthode de Newton utilisée pour résoudre les systèmes nonlinéaires, nos schémas sont conservatifs. Malheureusement, la résolution de ces systèmes est très coûteuse. Il est donc impératif d'utiliser des algorithmes de résolution performants. Pour des matrices de grande taille, on utilise souvent des méthodes itératives dont la convergence dépend de leur spectre. Nous avons donc étudié le spectre du système linéaire et proposé une stratégie de Scaling pour améliorer le conditionnement de la matrice. Combinée avec le préconditionneur classique ILU, notre stratégie de Scaling a réduit de façon significative le nombre d'itérations GMRES du système local et le temps de calcul. Nous avons également montré l'intérêt du schéma centré pour la simulation de certains écoulements à faible nombre de Mach. Nous avons ensuite étudié et implémenté la méthode de décomposition de domaine pour les écoulements compressibles. Nous avons proposé une nouvelle variable interface qui rend la méthode du complément de Schur plus facile à construire et nous permet de traiter les termes de diffusion. L'utilisation du solveur itératif GMRES plutôt que Richardson pour le système interface apporte aussi une amélioration des performances par rapport aux autres méthodes. Nous pouvons également découper notre domaine de calcul en un nombre quelconque de sous-domaines. En utilisant la stratégie de Scaling pour le système interface, nous avons amélioré le conditionnement de la matrice et réduit le nombre d'itérations GMRES de ce système. En comparaison avec le calcul distribué classique, nous avons montré que notre méthode est robuste et efficace.
428

Simulation of the Navier-Stokes Equations in Three Dimensions with a Spectral Collocation Method

Subich, Christopher January 2011 (has links)
This work develops a nonlinear, three-dimensional spectral collocation method for the simulation of the incompressible Navier-Stokes equations for geophysical and environmental flows. These flows are often driven by the interaction of stratified fluid with topography, which is accurately accounted for in this model using a mapped coordinate system. The spectral collocation method used here evaluates derivatives with a Fourier trigonometric or Chebyshev polynomial expansion as appropriate, and it evaluates the nonlinear terms directly on a collocated grid. The coordinate mapping renders ineffective fast solution methods that rely on separation of variables, so to avoid prohibitively expensive matrix solves this work develops a low-order finite-difference preconditioner for the implicit solution steps. This finite-difference preconditioner is itself too expensive to apply directly, so it is solved pproximately with a geometric multigrid method, using semicoarsening and line relaxation to ensure convergence with locally anisotropic grids. The model is discretized in time with a third-order method developed to allow variable timesteps. This multi-step method explicitly evaluates advective terms and implicitly evaluates pressure and viscous terms. The model’s accuracy is demonstrated with several test cases: growth rates of Kelvin-Helmholtz billows, the interaction of a translating dipole with no-slip boundaries, and the generation of internal waves via topographic interaction. These test cases also illustrate the model’s use from a high-level programming perspective. Additionally, the results of several large-scale simulations are discussed: the three-dimensional dipole/wall interaction, the evolution of internal waves with shear instabilities, and the stability of the bottom boundary layer beneath internal waves. Finally, possible future developments are discussed to extend the model’s capabilities and optimize its performance within the limits of the underlying numerical algorithms.
429

Numerical Investigation Of Rotor Wake-stator Interaction

Gurak, Derya 01 October 2004 (has links) (PDF)
iv In this thesis, numerical solutions of a 2D stator compressor cascade at a given inlet Mach number (0.7) and four values of incidence (49&deg / , 51&deg / , 53&deg / and 55&deg / ) are obtained. Reynolds averaged, thin layer, compressible Navier Stokes equations are solved. Different grid types have been generated. Finite differencing approach and LU - ADI splitting technique are used. Three block parallel Euler and Navier Stokes solutions are compared with the experimental results. Baldwin-Lomax turbulence model is used in the turbulent predictions and boundary layer comparisons and numerical results are in good agreement with the experiment. On the last part of the study, a rotor wake in the inlet flow has been introduced in the steady and unsteady analyses. The influence of this wake and the wake location in the inlet flow, to the total force and pressure is presented. The results have been showed that there is a relationship between the wake position and the incidence value of the case.
430

Smoke Simulation On Programmable Graphics Hardware

Yildirim, Gokce 01 September 2005 (has links) (PDF)
Fluids such as smoke, water and fire are simulated for both Computer Graphics applications and engineering fields such as Mechanical Engineering. Generally, Fluid Dynamics is used for the achievement of realistic-looking fluid simulations. However, the complexity of these calculations makes it difficult to achieve high performance. With the advances in graphics hardware, it has been possible to provide programmability both at the vertex and the fragment level, which allows for faster simulations of complex fluids and other events. In this thesis, one gaseous fluid, smoke is simulated in three dimensions by solving Navier-Stokes Equations (NSEs) using a semi-Lagrangian unconditionally stable method. Simulation is performed both on Central Processing Unit (CPU) and Graphics Processing Unit (GPU). For the programmability at the vertex and the fragment level, C for Graphics (Cg), a platform-independent and architecture neutralshading language, is used. Owing to the advantage of programmability and parallelism of GPU, smoke simulation on graphics hardware runs significantly faster than the corresponding CPU implementation. The test results prove the higher performance of GPU over CPU for running three dimensional fluid simulations.

Page generated in 0.3131 seconds