• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 39
  • 13
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 121
  • 121
  • 49
  • 40
  • 17
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Contributions à la commande des systèmes mécaniques sous-actionnés : du concept à l'implémentation temps réel / Contributions to the control of underactuated mecanical systems : from design to real-time implementation

Andary, Sébastien 10 April 2014 (has links)
Cette thèse porte sur la commande non linéaire des systèmes mécaniques sous-actionnés, ces systèmes possédant moins d'actionneur que de degrés de liberté. La dynamique interne de ces systèmes est souvent instable ce qui les rend difficiles à commander et requiert des méthodes de commande spécifiques. La contribution de cette thèse est la proposition de deux approches de commandes originales dont le but est la génération de cycle limites stables sur toutes les coordonnées du système mécanique sous-actionné. La première approche de commande est basée sur la linéarisation partielle par retour d'état et l'optimisation de trajectoires de référence. La seconde approche est basée sur les travaux récents sur la commande sans modèle, une technique de commande qui permet de contrôler un système sans avoir besoin de modèle mathématique préalable de sa dynamique. Ces deux approches de commande sont appliquées à un système mécanique sous-actionné particulier: le pendule inversé stabilisé par roue d'inertie. Plusieurs scénarios sont proposés, à la fois en simulation numérique et en temps-réel sur une plate-forme expérimentale. Les résultats obtenus attestent de la capacité des contrôleurs proposés à stabiliser le système autour de cycles limites stables en dépit de la présence de perturbations externes. / This thesis is focused on non linear control of underactuated mechanical systems, thoses systems with less actuators than degrees of freedom. The internal dynamics of such system is often unstable making them particulary difficult to control. Thus specific care must be taken when designing controlers for such systems. The main contribution of this thesis is the design of two new control schemes for stable limit cycles generation on all coordinates of underactuated mechanical systems. First control approach is based on partial feedback linearization and reference trajectories optimization. Second approach is based on recent work on model free control,a control scheme which doesn't require prior mathematicalmodel of the controlled system dynamics. The proposed approaches are applied to an inertiawheel inverted pendulumtestbed. Several experimental scenarios are proposed, both in numerical simulation and in realtime implementation. Obtained results demonstrate the ability of both controllers to stabilize the system around stable limit cycles and to reject external disturbances.
72

Controle não linear aplicado a processos de lingotamento contínuo de tiras / not available

Nascimento, Renato Rosa do 18 February 2002 (has links)
O presente trabalho tem como objetivo explorar o uso de técnicas de controle avançados na indústria siderúrgica. Propõe-se uma estratégia de controle do nível do aço da piscina formada entre os rolos de um sistema lingotamento contínuo de tiras (LCT) utilizando a tecnologia twin-roll (rolos duplos). O processo LCT rolos duplos tem por finalidade a produção de tiras solidificadas de espessura constante sob uma força de separação entre os rolos também constante. O nível de aço bem como a força de separação são as variáveis mais críticas para a produção de tiras de aço de alta qualidade. O nível pode ser controlado usando a entrada de aço ou a velocidade de laminação. Entretanto, a velocidade de laminação é usualmente utilizada para regular a força de separação entre os rolos. A estratégia de controle proposta inclui a incorporação de um tundish intermediário submerso na piscina. O controle do nível é então feito a partir da saída de aço do tundish intermediário. Consideramos as técnicas de controle linearizante por realimentação de estado e de controle fuzzy usando ambos os modelos Takagi-Sugeno (T-S) e Mamdani. Resultados de simulação são apresentados para uma planta instalada no Instituto de Pesquisa Tecnológica (IPT) de São Paulo, divisão de metalurgia (DIMET). / The aim of this work is to explore the use of advanced control techniques in the metallurgical industry. A control strategy to regulate the molten steellevel of a strip-casting process is proposed. The process produces a solidified strip of constant thickness given by the roll gap under a constant roll separation force. Along with the molten steel level the rool separation force are the most criticaI process variables. The molten steel level may be controlled using the tundish output flow or the casting speed. However, the casting speed is usually used to control the roll force separation. In the control strategy proposed it is incorporated an intermediary tundish submerse into the pool between the rotating rolls to improve the strip thickness uniformity. The molten steel level is thus controlled by the intermediary tundish output flow. Conventional PI, feedback linearizing plus a fuzzy control term and a fuzzy controller in a cascade configuration are considered. Simulation results are presented considering the real system parameters of a plant installed at the Instituto de Pesquisa Tecnológica (IPT) de São Paulo, Divisão de Metalurgia (DIMET).
73

Análise e implementação de estruturas de controle em dispositivo FPGA aplicadas a um conversor Buck / Analisys and implementation of control structures in a FPGA device applied to a Buck converter

Lucas, Ricardo 08 May 2015 (has links)
Este trabalho aborda diversas técnicas de controle, com o intuito de comparação do desempenho e robustez ao aplicá-los a um conversor Buck. Iniciando pelo controlador PID (Proporcional, Integral e Derivativo), amplamente explorado e dominado no meio industrial, ele é adotado neste trabalho como referência de comparação para as demais técnicas desenvolvidas. Outra estratégia aqui apresentada é o GANLPID (Gaussian Adaptative Non Linear PID ou PID Adaptativo Não Linear Gaussiano), trata-se de uma técnica não linear, possui ganhos variantes em função do erro baseados em uma função gaussiana. O controle por alocação de polos é uma técnica de controle que em sua forma básica não possui parcela integral, sendo necessária a inclusão deste termo para minimizar o erro em regime permanente. As principais características de análise de desempenho são o tempo de acomodação e overshoot. Todas as técnicas são exploradas a fim de serem implementadas em dispositivos FPGA (Field Programmable Gate Array), possuindo algumas vantagens sobre microcontroladores e DSP’s (Digital Signal Processor), pois conseguem executar tarefas em paralelo deixando a execução do algoritmo mais rápida. As técnicas de controle escolhidas foram simuladas utilizando a ferramenta DSP Builder e compiladas diretamente em código HDL (linguagem de descrição de hardware). Os resultados de simulação e experimentais são apresentados e comentados para validar os projetos propostos. / This work discuss several techniques of control, with an intention of comparison of performance and robustness to apply them to Buck coverter. Starting with PID (Proportional, Integral, Derivative) controller, widely explored and dominated in an industrial environment, it’s used in this work as comparison reference for the others techniques developed. Another strategy presented here is the GANLPID (Gaussian Adaptative Non LinearPID), it’s a case of non linear technique, has won variants in function of the based on a Gaussian error function. variants have gains on function of error based on a Gaussian function. The pole placement control technique not having full part in their basic forms, being necessary to include this term to eliminate the steady-state error. The main performance analysis features are the settling time and overshoot. All the techniques are explored in order to be implemented in FPGA (Field Programmable Gate Array) devices, having some advantages over microcontrollers and DSP’s (Digital Signal Processor), because can execute tasks in parallel allowing the implementation of the algorithm more faster. The chosen control techniques were simulated using the DSP Builder tool and and compiled directly in HDL (hardware description language) code. The results of simulation and experimental are presented and discussed in order to validate the proposed projects.
74

Control of Nitrogen Removal in Activated Sludge Processes

Samuelsson, Pär January 2005 (has links)
<p>More stringent requirements on nitrogen removal from wastewater are the motivation for this thesis. In order to improve treatment results and enhance cost-efficient operation of wastewater treatment plants, model based control strategies are presented.</p><p>A Java based simulator for activated sludge processes (JASS) is presented. The graphical user interface, educational experiences and implemented control strategies are discussed.</p><p>Controlling the addition of an external carbon source is the next topic discussed. A simple model based feedforward controller is derived and evaluated in a simulation study. The controller attenuates process disturbances quickly. Further, two feedforward controllers for adjusting the aeration volume in activated sludge processes are derived. The aim of the volume control strategies was to efficiently dampen the impact of process disturbances without using an excessively high dissolved oxygen concentration. The simulation results are promising and show that the aeration volume may be a feasible control variable.</p><p>A linearisation method for static input non-linearities is presented. The method gives essentially the same result as the existing standard method, but possesses some implementational advantages. The method is used to linearise the non-linear oxygen transfer function of an activated sludge process in an application study.</p><p>Multivariable interactions in a process model describing nitrate removal in an activated sludge process are studied using the well known RGA method as well as a relatively novel tool based on Hankel norms. The results of the analysis are compared to conclusions drawn from common process knowledge and are used to design a multivariable control strategy. It was found that process disturbances may be rejected faster using multivariable control.</p><p>Finally, the operational costs of the denitrification process are investigated and visualised graphically. Cost optimal regions are found by a numerical grid search. Procedures for controlling the denitrification process in a cost-efficient way are described.</p>
75

Adaptive Output Feedback Control of Flexible Systems

Yang, Bong-Jun 12 April 2004 (has links)
Neural network-based adaptive output feedback approaches that augment a linear control design are described in this thesis, and emphasis is placed on their real-time implementation with flexible systems. Two different control architectures that are robust to parametric uncertainties and unmodelled dynamics are presented. The unmodelled effects can consist of minimum phase internal dynamics of the system together with external disturbance process. Within this context, adaptive compensation for external disturbances is addressed. In the first approach, internal model-following control, adaptive elements are designed using feedback inversion. The effect of an actuator limit is treated using control hedging, and the effect of other actuation nonlinearities, such as dead zone and backlash, is mitigated by a disturbance observer-based control design. The effectiveness of the approach is illustrated through simulation and experimental testing with a three-disk torsional system, which is subjected to control voltage limit and stiction. While the internal model-following control is limited to minimum phase systems, the second approach, external model-following control, does not involve feedback linearization and can be applied to non-minimum phase systems. The unstable zero dynamics are assumed to have been modelled in the design of the existing linear controller. The laboratory tests for this method include a three-disk torsional pendulum, an inverted pendulum, and a flexible-base robot manipulator. The external model-following control architecture is further extended in three ways. The first extension is an approach for control of multivariable nonlinear systems. The second extension is a decentralized adaptive control approach for large-scale interconnected systems. The third extension is to make use of an adaptive observer to augment a linear observer-based controller. In this extension, augmenting terms for the adaptive observer can be used to achieve adaptation in both the observer and the controller. Simulations to illustrate these approaches include an inverted pendulum with its cart serially attached to two carts (one unmodelled), three spring-coupled inverted pendulums, and an inverted pendulum with its initial condition in a range in which a linear controller is destabilizing.
76

Supervisory Hybrid Control of a Wind Energy Conversion and Battery Storage System

Khan, Muhammad Shahid 31 July 2008 (has links)
This thesis presents a supervisory hybrid controller for the automatic operation and control of a wind energy conversion and battery storage system. The supervisory hybrid control scheme is based on a radically different approach of modeling and control design, proposed for the subject wind energy conversion and battery storage system. The wind energy conversion unit is composed of a 360kW horizontal axis wind turbine mechanically coupled to an induction generator through a gearbox. The assembly is electrically interfaced to the dc bus through a thyristor-controlled rectifier to enable variable speed operation of the unit. Static capacitor banks have been used to meet reactive power requirements of the unit. A battery storage device is connected to the dc bus through a dc-dc converter to support operation of the wind energy conversion unit during islanded conditions. Islanding is assumed to occur when the tiebreaker to the utility feeder is in open position. The wind energy conversion unit and battery storage system is interfaced to the utility grid at the point of common coupling through a 25km long, 13.8kV feeder using a voltage-sourced converter unit. A bank of static (constant impedance) and dynamic (induction motor) loads is connected to the point of common coupling through a step down transformer. A finite hybrid-automata based model of the wind energy conversion and storage system has been proposed that captures the different operating regimes of the system during grid-connected and in islanded operating modes. The hybrid model of the subject system defines allowable operating states and predefines the transition paths between these operating states. A modular control design approach has been adapted in which the wind energy conversion and storage system has been partitioned along the dc bus into three independent system modules. Traditional control schemes using linear proportional-plus-integral compensators have been used for each system module with suitable modifications where necessary in order to achieve the required steady state and transient performance objectives. A supervisory control layer has been used to combine and configure control schemes of the three system modules to suite the requirements of system operation during any one operating state depicted by the hybrid model of the system. Transition management strategies have been devised and implemented through the supervisory control layer to ensure smooth inter-state transitions and bumpless switching among controllers. It has been concluded based on frequency domain linear analysis and time domain electromagnetic transient simulations that the proposed supervisory hybrid controller is capable of operating the wind energy conversion and storage system in both grid-connected and in islanded modes under changing operating conditions including temporary faults on the utility grid.
77

Supervisory Hybrid Control of a Wind Energy Conversion and Battery Storage System

Khan, Muhammad Shahid 31 July 2008 (has links)
This thesis presents a supervisory hybrid controller for the automatic operation and control of a wind energy conversion and battery storage system. The supervisory hybrid control scheme is based on a radically different approach of modeling and control design, proposed for the subject wind energy conversion and battery storage system. The wind energy conversion unit is composed of a 360kW horizontal axis wind turbine mechanically coupled to an induction generator through a gearbox. The assembly is electrically interfaced to the dc bus through a thyristor-controlled rectifier to enable variable speed operation of the unit. Static capacitor banks have been used to meet reactive power requirements of the unit. A battery storage device is connected to the dc bus through a dc-dc converter to support operation of the wind energy conversion unit during islanded conditions. Islanding is assumed to occur when the tiebreaker to the utility feeder is in open position. The wind energy conversion unit and battery storage system is interfaced to the utility grid at the point of common coupling through a 25km long, 13.8kV feeder using a voltage-sourced converter unit. A bank of static (constant impedance) and dynamic (induction motor) loads is connected to the point of common coupling through a step down transformer. A finite hybrid-automata based model of the wind energy conversion and storage system has been proposed that captures the different operating regimes of the system during grid-connected and in islanded operating modes. The hybrid model of the subject system defines allowable operating states and predefines the transition paths between these operating states. A modular control design approach has been adapted in which the wind energy conversion and storage system has been partitioned along the dc bus into three independent system modules. Traditional control schemes using linear proportional-plus-integral compensators have been used for each system module with suitable modifications where necessary in order to achieve the required steady state and transient performance objectives. A supervisory control layer has been used to combine and configure control schemes of the three system modules to suite the requirements of system operation during any one operating state depicted by the hybrid model of the system. Transition management strategies have been devised and implemented through the supervisory control layer to ensure smooth inter-state transitions and bumpless switching among controllers. It has been concluded based on frequency domain linear analysis and time domain electromagnetic transient simulations that the proposed supervisory hybrid controller is capable of operating the wind energy conversion and storage system in both grid-connected and in islanded modes under changing operating conditions including temporary faults on the utility grid.
78

Semiactive control strategies for vibration mitigation in adaptronic structures equipped with magnetorheological dampers

Zapateiro de la Hoz, Mauricio Fabián 21 July 2009 (has links)
Los sistemas tales como edificios y veh¨ªculos est¨¢n sujetos a vibraciones que pueden causar mal funcionamiento, incomodidad o colapso. Para mitigar estas vibraciones, se suelen instalar amortiguadores. Estas estructuras se convierten en sistemas adaptr¨®nicos cuando los amortiguadores son controlables. Esta tesis se enfoca en la soluci¨®n del problema de vibraciones en edificios y veh¨ªculos usando amortiguadores magnetoreol¨®gicos (MR). Estos son unos amortiguadores controlables caracterizados por una din¨¢mica altamente no lineal. Adem¨¢s, los sistemas donde se instalan se caracterizan por la incertidumbre param¨¦trica, la limitaci¨®n de medidas y las perturbaciones desconocidas, lo que obliga al uso de t¨¦cnicas complejas de control. En esta tesis se usan Backstepping, QFT y H2/H¡Þ mixto para resolver el problema. Las leyes de control se verifican mediante simulaci¨®n y experimentaci¨®n. / Buildings and vehicle systems are subject to vibrations that may cause malfunctioning, discomfort or collapse. It is an extended practice to install damping devices in order to mitigate such vibrations. With controllable dampers, structures act as adaptronic systems. This dissertation focuses on solving the vibration mitigation problem in buildings and vehicles making use of magnetorheological (MR) dampers which are controllable devices characterized by a highly nonlinear dynamics. Additionally, the systems where they are installed, are characterized by parametric uncertainties, limited measurement availability and unknown disturbances. This implies the use of complex control techniques in order to get a reliable performance of the control system. This research makes use of Backstepping, QFT and Mixed H2/H¡Þ control techniques for achieving the proposed goal. These are verified thorugh simulations and experimentation.
79

Visual homing for a car-like vehicle

Usher, Kane January 2005 (has links)
This thesis addresses the pose stabilization of a car-like vehicle using omnidirectional visual feedback. The presented method allows a vehicle to servo to a pre-learnt target pose based on feature bearing angle and range discrepancies between the vehicle's current view of the environment and that seen at the learnt location. The best example of such a task is the use of visual feedback for autonomous parallel-parking of an automobile. Much of the existing work in pose stabilization is highly theoretical in nature with few examples of implementations on 'real' vehicles, let alone vehicles representative of those found in industry. The work in this thesis develops a suitable test platform and implements vision-based pose stabilization techniques. Many of the existing techniques were found to fail due to vehicle steering and velocity loop dynamics, and more significantly, with steering input saturation. A technique which does cope with the characteristics of 'real' vehicles is to divide the task into predefined stages, essentially dividing the state space into sub-manifolds. For a car-like vehicle, the strategy used is to stabilize the vehicle to the line which has the correct orientation and contains the target location. Once on the line, the vehicle then servos to the desired pose. This strategy can accommodate velocity and steering loop dynamics, and input saturation. It can also allow the use of linear control techniques for system analysis and tuning of control gains. To perform pose stabilization, good estimates of vehicle pose are required. A simple, yet robust, method derived from the visual homing literature is to sum the range vectors to all the landmarks in the workspace and divide by the total number of landmarks--the Improved Average Landmark Vector. By subtracting the IALV at the target location from the currently calculated IALV, an estimate of vehicle pose is obtained. In this work, views of the world are provided by an omnidirectional camera, while a magnetic compass provides a reference direction. The landmarks used are red road cones which are segmented from the omnidirectional colour images using a pre-learnt, two-dimensional lookup table of their colour profile. Range to each landmark is estimated using a model of the optics of the system, based on a flat-Earth assumption. A linked-list based method is used to filter the landmarks over time. Complementary filtering techniques, which combine the vision data with vehicle odometry, are used to improve the quality of the measurements.
80

Parameter estimation for non-linear systems : an application to vehicle dynamics

Pedchote, Chamnarn January 2003 (has links)
This work presents an investigation into the parameter estimation of suspension components and the vertical motions of wheeled vehicles from experimental data. The estimation problems considered were for suspension dampers, a single wheel station and a full vehicle. Using conventional methods (gradient-based (GB), Downhill Simplex (DS)) and stochastic methods (Genetic Algorithm (GA) and Differential Evolution (DE)), three major problems were encountered. These were concerned with the ability and consistency of finding the global optimum solution, time consumption in the estimation process, and the difficulties in setting the algorithm's control parameters. To overcome these problems, a new technique named the discrete variable Hybrid Differential Evolution (dvHDE) method is presented. The new dvHDE method employs an integer-encoding technique and treats all parameters involved in the same unified way as discrete variables, and embeds two mechanisms that can be used to deal with convergence difficulties and reduce the time consumed in the optimisation process. The dvHDE algorithm has been validated against the conventional GB, DS and DE techniques and was shown to be more efficient and effective in all but the simplest cases. Its robustness was demonstrated by its application to a number of vehicle related problems of increasing complexity. These include case studies involving parameter estimation using experimental data from tests on automotive dampers, a single wheel station and a full vehicle. The investigation has shown that the proposed dvHDE method, when compared to the other methods, was the best for finding the global optimum solutions in a short time. It is recommended for nonlinear vehicle suspension models and other similar systems.

Page generated in 0.0472 seconds