Spelling suggestions: "subject:"[een] NUMERICAL MODELING"" "subject:"[enn] NUMERICAL MODELING""
211 |
Design And Optimization Of Nanostructured Optical FiltersBrown, Jeremiah 01 January 2008 (has links)
Optical filters encompass a vast array of devices and structures for a wide variety of applications. Generally speaking, an optical filter is some structure that applies a designed amplitude and phase transform to an incident signal. Different classes of filters have vastly divergent characteristics, and one of the challenges in the optical design process is identifying the ideal filter for a given application and optimizing it to obtain a specific response. In particular, it is highly advantageous to obtain a filter that can be seamlessly integrated into an overall device package without requiring exotic fabrication steps, extremely sensitive alignments, or complicated conversions between optical and electrical signals. This dissertation explores three classes of nano-scale optical filters in an effort to obtain different types of dispersive response functions. First, dispersive waveguides are designed using a sub-wavelength periodic structure to transmit a single TE propagating mode with very high second order dispersion. Next, an innovative approach for decoupling waveguide trajectories from Bragg gratings is outlined and used to obtain a uniform second-order dispersion response while minimizing fabrication limitations. Finally, high Q-factor microcavities are coupled into axisymmetric pillar structures that offer extremely high group delay over very narrow transmission bandwidths. While these three novel filters are quite diverse in their operation and target applications, they offer extremely compact structures given the magnitude of the dispersion or group delay they introduce to an incident signal. They are also designed and structured as to be formed on an optical wafer scale using standard integrated circuit fabrication techniques. A number of frequency-domain numerical simulation methods are developed to fully characterize and model each of the different filters. The complete filter response, which includes the dispersion and delay characteristics and optical coupling, is used to evaluate each filter design concept. However, due to the complex nature of the structure geometries and electromagnetic interactions, an iterative optimization approach is required to improve the structure designs and obtain a suitable response. To this end, a Particle Swarm Optimization algorithm is developed and applied to the simulated filter responses to generate optimal filter designs.
|
212 |
Predictive modeling of infrared detectors and material systemsPinkie, Benjamin 17 February 2016 (has links)
Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming.
In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.
|
213 |
Developing an Accurate Simulation Model for Predicting Friction Stir Welding Processes in 2219 Aluminum AlloyBrooks, Kennen 14 December 2022 (has links)
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature that must be accounted for in the constitutive law of the material being joined. Constitutive laws are most often calibrated using flow stresses from hot compression or hot torsion testing, where strain rates are much lower than those of the FSW process. As such, the current work employed a recently developed method to measure flow stresses in AA 2219-T67 at the high strain rates typical of FSW. These data were used in the development of a finite element simulation of FSW to study the effect of the new flow stress data on temperature, torque, and load predictions, compared to standard material models calibrated with hot compression or hot torsion data. It was found that load predictions were significantly better with the new material law, reducing the error with respect to experimental measurements by approximately 79%. Because heat generation during FSW is primarily a function of friction between the rapidly spinning tool and the workpiece, the choice of friction law, and associated parameters, were also studied with respect to FE model predictions. It was found that the Norton (viscoplastic) friction law was the most appropriate for modeling FSW, because its predictions were more accurate for both the transient and steady-state phases of the FSW plunge experiment. The postulated reason for the superior performance of the Norton law was its ability to account for temperature and rate sensitivity of the workpiece material sheared by the tool, while the Tresca limited Coulomb law favored contact pressure, with essentially no temperature or rate dependence of local material properties. The combination of the new flow stress data and the optimized Norton friction law resulted in a 63% overall reduction in model error, compared to the use of a standard material law and boilerplate friction parameters. The overall error was calculated as an equally weighted comparison of temperatures, torques, and forces with experimentally measured values.
|
214 |
Modeling and adjoint sensitivity analysis of general anisotropic high frequency structuresSeyyed-Kalantari, Laleh January 2017 (has links)
We propose an efficient wideband theory for adjoint variable sensitivity analysis of problems with general anisotropic materials. The method is formulated based on the transmission line numerical modeling technique. The anisotropic material properties of potential interest are the full tensors of permittivity, permeability, electrical conductivity, magnetic resistivity, magnetoelectric coupling, and electromagnetic coupling. The tensors may contain non-diagonal elements. Our method estimates the gradients of the desired response with respect to all designable parameters using at most one extra simulation, regardless of their number. In contrast, in the conventional sensitivity analysis method using central finite differences, the number of the required simulations scales linearly with the number of designable parameters. The theory has been implemented for sensitivity analysis of the two and three-dimensional structures. The available adjoint variable method (AVM) sensitivities enable the optimization-based design of anisotropic and dispersive anisotropic structures.
We apply our AVM technique to optimization-based wideband invisibility cloak design of arbitrary-shape objects. Our method optimizes the voxel-by-voxel constitutive parameters of an anisotropic cloak. This results in a large number of optimizable parameters. The associated sensitivities of a wideband cloaking objective function are efficiently estimated using our anisotropic adjoint variable method technique. A gradient-based optimization algorithm utilizes the available sensitivity information to iteratively minimize the visibility objective function and to determine the constitutive parameters of the optimal cloak. / Thesis / Doctor of Philosophy (PhD)
|
215 |
Modeling Particle Drag in Accelerating Flows with Implications for SBLI in PIV - A Numerical AnalysisKalagotla, Dilip 24 July 2018 (has links)
No description available.
|
216 |
NUMERICAL SIMULATIONS OF STEADY LOW-REYNOLDS-NUMBER FLOWS AND ENHANCED HEAT TRANSFER IN WAVY PLATE-FIN PASSAGESZHANG, JIEHAI 31 May 2005 (has links)
No description available.
|
217 |
[pt] MODELAGEM NUMÉRICA DA RESPOSTA SÍSMICA DE DEPÓSITOS DE SOLO MOLE / [en] NUMERICAL MODELING OF THE SEISMIC RESPONSE OF SOFT SOIL DEPOSITSMIGUEL ANGEL VILLALOBOS BRAVO 19 September 2019 (has links)
[pt] Os depósitos de solo próximos à superfície podem influenciar significativamente a amplitude, duração e conteúdo de frequências do movimento causado por terremotos. A avaliação de danos causados pelos terremotos indica que os menores níveis de dano se produzem em edificações com fundação em solo rijo, enquanto que os maiores níveis de dano se produzem, em geral, em estruturas fundadas em solo mole. O objetivo desta pesquisa é analisar a resposta sísmica de três sítios conformados por solo mole de alta plasticidade não susceptíveis à liquefação, classificados como sítios tipo E ou F segundo a norma de construção International Building Code, cuja classificação é baseada na velocidade da onda cisalhante nos 30 primeiros metros do perfil de solo. Este estudo focou em realizar simulações numéricas, chamadas análises de resposta de sítio com terremotos de projeto em rocha determinados em função do estudo de ameaça sísmica local. Foram usados os programas de análise de propagação de ondas 1D SHAKE2000 e D-MOD2000. O primeiro incorpora o modelo de análise linear equivalente. O segundo é um programa de análise não linear baseado no modelo constitutivo hiperbólico MKZ, com capacidade de realizar análises em termos de tensões totais e em termos de tensões efetivas mediante modelos de degradação cíclica e geração e redistribuição de poropressão. Este estudo verificou que movimentos de alta intensidade propagados verticalmente através de um perfil de solo mole induz altos níveis de deformação cisalhante resultando em um maior amortecimento do solo o que produz a atenuação das acelerações. Na análise das histórias de deslocamento relativo, observou-se vários ciclos com deslocamentos máximos entre 12 e 24 cm, o que sugere que o deslocamento poderia ser um parâmetro mais representativo do potencial de dano do movimento, observando-se que o deslocamento, em oposição à aceleração, é amplificado à medida que a intensidade do movimento aumenta. / [en] Near surface soils can greatly influence the amplitude, duration, and frequency content of ground motions. The survey of damage caused by earthquakes indicates that the lowest levels of damage occur in structures founded on rock or hard soil, while most of the damage occurs usually in structures founded in soft soil sites. The scope of this research is to analyze the seismic response of three sites with high plasticity soft soil deposits not susceptible to liquefaction, classified as sites E or F according to the building code International Building Code, whose classification is defined by the time averaged shear wave velocity over the top 30 meters of the soil deposit. This study focused on generating data from numerical simulations, called site response analyses. To this end, design earthquakes on rock are determined considering the local seismic hazard. For this study the programs of one-dimensional wave propagation analysis SHAKE2000 and D-MOD2000 were used. The first one is a well known code for the equivalent linear method. The second, is a nonlinear analysis code based on the hyperbolic constitutive model MKZ, capable of performing analyses in terms of total stresses and in terms of effective stresses incorporating models of cyclic degradation and, generation and redistribution of pore pressure for sands and clays. This study verified that high intensity motions vertically propagated through a soft soil profile induce high levels of shear strain resulting in greater soil damping which produces the attenuation of the acceleration. From the analysis of the relative displacement histories of the ground, which shown many cycles with a maximum displacement between 12 and 24 cm, it is suggested that the displacement could be a more representative parameter of the potential of damage of strong motions, showing that the displacement, as opposed to the acceleration, is amplified as the intensity of the motion increases.
|
218 |
MODELING OF THERMO-MECHANICAL BEHAVIOR OF NITINOL ACTUATOR FOR SMART NEEDLE APPLICATIONNguyen, Tuan Minh January 2012 (has links)
A large and increasing number of cancer interventions, including both diagnosis and therapy, involve precise placement of needles, which is extremely difficult. This challenge is due to lack of proper actuation of the needle (i.e., actuated from the proximal end, which is far away from the needle tip). To overcome this challenge, we propose to bend the needle using a smart actuator that applies bending forces on the needle body; thereby, improving the navigation of the needle. The smart actuator is designed with shape memory alloy (SMA) wires, namely Nitinol, due to their unique properties such as super-elasticity, shape memory effect, and biocompatibility. For accurate steering of the smart needle, there is a need to understand Nitinol thermo-mechanical behaviors. Various existing SMA constitutive models were investigated and compared. Since SMA is used as an actuator in this project, only one dimensional constitutive models are considered. Two distinct models with different phase transformation kinetic approaches were chosen. The first model was proposed by Terriault and Brailovski (J. Intell. Mat. Systems Structures, 2011) using a modified one dimensional Likhachev formulation. The second model was developed by Brinson (J. Intell. Mat. Systems Structures , 1993). Since all SMA constitutive models are empirically based, several important materials' constants such as Phase Transformation Temperatures are needed. The four Transformation Temperatures are: Martensite start (Ms), Martensite finish (Mf), Austenite start (As), Austenite finish (Af). Differential Scanning Calorimetry (DSC) was used to obtain these constants. These temperatures are also influenced by stress, defined by the Clausius-Clayperon coefficients. The coefficients were obtained by measuring Nitinol temperature and displacement response under various constant stress conditions. In order to study its actuation behavior, Nitinol wires under constant strain configuration and resistance heating were tested for their force response. The thermo-mechanical responses were then compared with numerical simulations. While Terriault and Brailovski resistance heating formulation agrees strongly with temperature responses, the model cannot be used to simulate the actuator mechanical responses. Brinson model simulations of the force responses were found to agree well with experimental results. In conclusion, Terriault and Brailovski resistance heating formulation should be coupled with Brinson model to accurately simulate Nitinol actuation behavior for the smart needle. / Mechanical Engineering
|
219 |
Computational Studies of Penetration and Mixing for Complex Jet Injectors to Aid in Design of Hypersonic SystemsCampioli, Theresa Lynn 26 July 2007 (has links)
A computational study of sonic light-gas jet injection into a supersonic cross flow was conducted. The scope of the numerical analysis encompassed many studies that affect how the flow-field is numerically modeled and the behavior, specifically mixing, of the flow-field itself. A single, round injector was used for the Baseline design. Simulated conditions involved sonic injection of helium heated to 313 K into a Mach 4 air cross-stream with average Reynolds number 5.77 e+7 per meter and a freestream momentum flux ratio of 2.1. Experiments at these conditions were available for comparison. The primary numerical flow solver employed was GASP v. 4.2. The Menter Shear Stress Transport (SST) turbulence model was used, since the algorithm has good capability of solving both wall-bounded and free-shear flows. The SST model was able to capture the mixing behavior of the complex flow-field. Important numerical parameters that affect the capabilities of the numerical solver were studied for the Baseline injector. These sensitivity studies varied the choice of turbulent Prandtl number, Schmidt number, freestream turbulence intensity, boundary layer size, steady and unsteady approaches and computational software packages. A decrease in the turbulent Prandtl number resulted in better mixing behavior of the prediction and better agreement with the experiment. An increase in the turbulent Schmidt number had a small adverse effect on the predictions. The mixing characteristics remained constant with an increase in freestream turbulence intensity. The best Baseline prediction was then compared to three different injector configurations: an aerodynamic ramp consisting of four injectors in an array, a diamond injector both aligned and yawed 15° to the oncoming flow. The Computational Fluid Dynamics (CFD) tools were more accurate compared to experiment in the prediction of the aeroramp injector than the diamond-shaped injectors. The aeroramp injector slightly improved mixing efficiency over the Baseline injector at these conditions. Both of the diamond-shaped injectors had similar mixing as the Baseline injector but did not predict significant improvement in penetration for the analyzed conditions. Additional studies involving the interaction of transverse injection with impinging oblique shock waves were performed. The impingement of a shock upon light gas jet injection increased mixing. The closer the shock is to the injection point, the larger the effect on mixing and vorticity. The last analyses involved a numerical comparison of a non-reacting model to a reacting hydrogen-air model. The reacting analysis prediction had an improved spreading rate and larger counter-rotating vortex pair with downstream distance over the non-reacting analysis. The mixing was not significantly altered by the addition of hydrogen-air reactions to the numerical equations. The numerical tools used are capable of reasonable accuracy in predicting the complex flow-field of jet injection into a supersonic freestream with proper choice of models and parameters. Numerical modeling offers a way to study the entire flow-field thoroughly in a cost and time efficient manner. / Ph. D.
|
220 |
Vibration Characterization and Numerical Modeling of a Pneumatic Impact HammerKadam, Rahul Sadashiv 16 October 2006 (has links)
Hand transmitted vibration (HTV) is one of the most common hazards faced by workers in the construction industry. A major source of HTV is hand held percussion tools, such as pneumatically driven chipping hammers and rock drills. This thesis presents a new approach to measuring the vibration from these tools using an experimental hand arm model to which the tools are attached. The experimental hand-arm model has been designed to have similar dynamic characteristics to that of a human hand-arm system. This approach addresses the issue of repeatability as HTV measurements suffer from variability between cases. The measured acceleration of the hand-arm system is in range or close to range of the measured accelerations of the test subjects with superior repeatability. Further, the thesis presents a nonlinear numerical model of a pneumatic impact hammer. Fundamentally, the numerical model was made up of two different sub-models, 1) a fluid flow model and 2) a structural dynamic model. The fluid flow model was based on the equations for mass flow rate of air though a bleed orifice assuming an isentropic process. The second sub-model deals with modeling the structural components of the impact hammer consisting of the major hammer like the center body, handle, piston and chisel as well as the human hand and the ground. Time domain simulations of the hammer were carried out by using a state space formulation to get displacements, velocities and accelerations of the each component as well as the exhaust jet velocities. Experiments were carried out to measure the handle response and exhaust jet velocities as well as pressure profiles. The results obtained from the numerical model were then validated using these experimental results. Finally, a parametric study using the numerical model was carried out to explore different vibration control techniques. / Master of Science
|
Page generated in 0.042 seconds