• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 176
  • 105
  • 24
  • 12
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 622
  • 622
  • 143
  • 122
  • 120
  • 115
  • 91
  • 56
  • 47
  • 43
  • 39
  • 38
  • 37
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

Saffaripour, Meghdad 14 January 2014 (has links)
In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent agreement between the computed and measured data for the numbers of primary particles per aggregate and the diameters of primary particles. This model is an important stepping-stone in the drive to simulate industry-relevant and multi-dimensional flames of practical liquid fuels, with detailed chemistry and soot formation.
42

Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

Saffaripour, Meghdad 14 January 2014 (has links)
In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent agreement between the computed and measured data for the numbers of primary particles per aggregate and the diameters of primary particles. This model is an important stepping-stone in the drive to simulate industry-relevant and multi-dimensional flames of practical liquid fuels, with detailed chemistry and soot formation.
43

A Transient Model for Lead Pipe Corrosion in Water Supply Systems

Islam, Md. Monirul 01 January 2011 (has links)
This thesis focuses on lead related drinking water quality issues in general and on hydraulic transient induced lead pipe corrosion events in water distribution systems in particular. Corrosion is a complex phenomenon, and particularly in water distribution systems, when its already challenging electro-chemical processes are influenced by numerous other physical and chemical factors. Lead pipe corrosion can itself be influenced by both the hydraulic transients and water chemistry events. To understand the relationship among hydraulic, chemical and material processes, an existing numerical 1-D transient-corrosion model for iron-pipe based systems is modified and extended to apply for systems having lead-pipes connected in series. The coupled hydraulic transient and advection-dispersion-reaction model with improved data handling facilities is applied for analyzing the transient induced lead pipe corrosion behaviors in the system for a range of options and establishes interrelationships among the parameters.
44

A Transient Model for Lead Pipe Corrosion in Water Supply Systems

Islam, Md. Monirul 01 January 2011 (has links)
This thesis focuses on lead related drinking water quality issues in general and on hydraulic transient induced lead pipe corrosion events in water distribution systems in particular. Corrosion is a complex phenomenon, and particularly in water distribution systems, when its already challenging electro-chemical processes are influenced by numerous other physical and chemical factors. Lead pipe corrosion can itself be influenced by both the hydraulic transients and water chemistry events. To understand the relationship among hydraulic, chemical and material processes, an existing numerical 1-D transient-corrosion model for iron-pipe based systems is modified and extended to apply for systems having lead-pipes connected in series. The coupled hydraulic transient and advection-dispersion-reaction model with improved data handling facilities is applied for analyzing the transient induced lead pipe corrosion behaviors in the system for a range of options and establishes interrelationships among the parameters.
45

Numerical Modeling of Drug Delivery to Solid Tumor Microvasculature

Soltani, Madjid January 2013 (has links)
Modeling interstitial fluid flow involves processes such as fluid diffusion, convective transport in the extracellular matrix, and extravasation from blood vessels. In all of these processes, computational fluid dynamics can play a crucial role in elucidating the mechanisms of fluid flow in solid tumors and surrounding tissues. To date, microvasculature flow modeling has been most extensively studied with simple tumor shapes and their capillaries at different levels and scales. With our proposed numerical model, however, more complex and realistic tumor shapes and capillary networks can be studied. First, a mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, the interstitial pressure distribution results in a non-uniform distribution of drug particles. Pressure distribution for different values of necrotic radii is examined, and two new parameters, the critical tumor radius and critical necrotic radius, are defined. In specific ranges of these critical dimensions the interstitial fluid pressure is relatively lower, which in turn leads to a diminished opposing force against drug movement and a subsequently higher drug concentration and potentially enhanced therapeutic effects. In this work, the numerical model of fluid flow in solid tumors is further developed to incorporate and investigate non-spherical tumor shapes such as prolate and oblate ones. Using this enhanced model, tumor shape and size effects on drug delivery to solid tumors are then studied. Based on the assumption that drug particles flow with the interstitial fluid, the pressure and velocity maps of the latter are used to illustrate the drug delivery pattern in a solid tumor. Additionally, the effects of the surface area per unit volume of the tissue, as well as vascular and interstitial hydraulic conductivity on drug delivery efficiency, are investigated. Using a tumor-induced microvasculature architecture instead of a uniform distribution of vessels provides a more realistic model of solid tumors. To this end, continuous and discrete mathematical models of angiogenesis were utilized to observe the effect of matrix density and matrix degrading enzymes on capillary network formation in solid tumors. Additionally, the interactions between matrix-degrading enzymes, the extracellular matrix and endothelial cells are mathematically modeled. Existing continuous and discrete models of angiogenesis were modified to impose the effect of matrix density on the solution. The imposition has been performed by a specific function in movement potential. Implementing realistic boundary and initial conditions showed that, unlike in previous models, the endothelial cells accelerate as they migrate toward the tumor. Now, the tumor-induced microvasculature network can be applied to the model developed in Chapters 2 and 3. Once the capillary network was set up, fluid flow in normal and cancerous tissues was numerically simulated under three conditions: constant and uniform distribution of intravascular pressure in the whole domain, a rigid vascular network, and an adaptable vascular network. First, governing equations of sprouting angiogenesis were implemented to specify the different domains for the network and interstitium. Governing equations for flow modeling were introduced for different domains. The conservation laws for mass and momentum, Darcy’s equation for tissue, and a simplified Navier Stokes equation for blood flow through capillaries were then used for simulating interstitial and intravascular flows. Finally, Starling’s law was used to close this system of equations and to couple the intravascular and extravascular flows. The non-continuous behavior of blood and the adaptability of capillary diameter to hemodynamics and metabolic stimuli were considered in blood flow simulations through a capillary network. This approach provided a more realistic capillary distribution network, very similar to that of the human body. This work describes the first study of flow modeling in solid tumors to realistically couple intravascular and extravascular flow through a network generated by sprouting angiogenesis, consisting of one parent vessel connected to the network. Other key factors incorporated in the model for the first time include capillary adaptation, non-continuous viscosity blood, and phase separation of blood flow in capillary bifurcation. Contrary to earlier studies which arbitrarily assumed veins and arteries to operate on opposite sides of a tumor network, the present approach requires the same vessel to run and from the network. Expanding the earlier models by introducing the outlined components was performed in order to achieve a more-realistic picture of blood flow through solid tumors. Results predict an almost doubled interstitial pressure and are in better agreement with human biology compared to the more simplified models generally in use today.
46

Interaction between thermal comfort and HVAC energy consumption in commercial buildings

Taghi Nazari, Alireza 05 1900 (has links)
The primary purpose of the current research was to implement a numerical model to investigate the interactions between the energy consumption in Heating, Ventilating, and Air Conditioning (HVAC) systems and occupants’ thermal comfort in commercial buildings. A numerical model was developed to perform a thermal analysis of a single zone and simultaneously investigate its occupants’ thermal sensations as a non-linear function of the thermal environmental (i.e. temperature, thermal radiation, humidity, and air speed) and personal factors (i.e. activity and clothing). The zone thermal analyses and thermal comfort calculations were carried out by applying the heat balance method and current thermal comfort standard (ASHRAE STANDARD 55-2004) respectively. The model was then validated and applied on a single generic zone, representing the perimeter office spaces of the Centre for Interactive Research on Sustainability (CIRS), to investigate the impacts of variation in occupants’ behaviors, building’s envelope, HVAC system, and climate on both energy consumption and thermal comfort. Regarding the large number of parameters involved, the initial summer and winter screening analyses were carried out to determine the measures that their impacts on the energy and/or thermal comfort were most significant. These analyses showed that, without any incremental cost, the energy consumption in both new and existing buildings may significantly be reduced with a broader range of setpoints, adaptive clothing for the occupants, and higher air exchange rate over the cooling season. The effects of these measures as well as their combination on the zone thermal performance were then studied in more detail with the whole year analyses. These analyses suggest that with the modest increase in the averaged occupants’ thermal dissatisfaction, the combination scenario can notably reduce the total annual energy consumption of the baseline zone. Considering the global warming and the life of a building, the impacts of climate change on the whole year modeling results were also investigated for the year 2050. According to these analyses, global warming reduced the energy consumption for both the baseline and combination scenario, thanks to the moderate and cold climate of Vancouver.
47

Numerical modelling of ferromagnetic embolisation hyperthermia in the treatment of liver cancer

Tsafnat, Naomi, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Both primary and secondary liver cancers are common and the majority of patients are not eligible for surgical resection or a liver transplant, which are considered the only hope of cure. Mortality rates are high and there is a need for alternative treatment options. New forms of local treatment work best on small tumours; large ones, however, remain difficult to treat. Hyperthermia involves heating tumours to 40??-44?? C. The aim is to heat the entire tumour without damaging the surrounding normal tissue. Treating deep seated tumours is technically challenging. Ferromagnetic embolisation hyperthermia (FEH) is a novel method of treating liver tumours. Magnetic microspheres are infused into the hepatic artery and lodge primarily in the tumour periphery. An applied alternating-current magnetic field causes the microspheres to heat. Animal experiments have shown that this is a promising technique. There is a need for modelling of FEH prior to commencement of clinical trials. Analytical and numerical models of tumour heating during FEH treatment are presented here. The models help predict the temperature distributions that are likely to arise during treatment and give insight into the factors affecting tumour and liver heating. The models incorporate temperature-dependent thermal properties and blood perfusion rates of the tissues and a heterogeneous clustering of microspheres in the tumour periphery. Simulations show that the poorly perfused tumours heat preferentially while the liver is effectively cooled by blood flow from the portal vein. A peripheral distribution of heat sources produces a more even temperature field throughout the tumour, compared to a heat source that is centred within the tumour core. Large tumours reach higher temperatures and have higher heating rates, supporting experimental findings. Using temperature-dependent, rather than constant, values for thermal conductivities and blood perfusion rates results in higher temperatures within the tumour. The uneven clustering of microspheres in the tumour periphery leads to a more heterogeneous temperature distribution in the core, but it has less of an effect on the wellperfused liver. The results show that FEH has the potential to effectively treat liver tumours and the technique merits further investigation.
48

Phenology and allocation of belowground plant carbon at local to global scales

Abramoff, Rose Zheng 08 April 2016 (has links)
Forests play an important role in mitigating climate change by removing carbon dioxide (CO2) from the atmosphere via photosynthesis and storing it in plant tissues and soil organic matter (SOM). Plant roots are a major conduit for transporting recently fixed CO2 belowground, where carbon (C) remains in SOM or returns to the atmosphere via respiration of soil microbes. Compared to aboveground plant processes related to the C cycle, there is little understanding of how belowground plant-C allocation to roots, symbiotic root fungi and secretions into the soil influence the gain or loss of C from the soil. Further, the uncertainty in the timing and amount of root growth that occurs in forests is a barrier to understanding how root activity responds to global change and feeds back to the C cycle. Therefore, the objective of my research is to quantify the timing and magnitude of C allocation to roots and soil via data compilation, field studies and modeling across broad spatial scales. Using data compilation at the global scale, I show that root and shoot phenology are often asynchronous and that evergreen trees commonly have later root growth compared to deciduous trees using meta-analysis across four biomes. At the plot scale, field studies in a mid-latitude forest demonstrate that deciduous stands allocate more C belowground earlier in the growing season compared to a conifer stand. The difference in phenology between stands can be attributed to the timing of root growth. At the root scale, zymographic analysis demonstrates that microbial extracellular enzyme activity is concentrated near the surface of roots and that the rhizosphere can extend well beyond 2 mm from the root surface. Finally, I developed a new model of microbial physiology and extracellular enzyme activity to assess how climate change may affect plant - microbe interactions and soil organic matter decomposition. I show that increases in temperature and the quantity of C inputs substantially alter decomposition. Collectively, these results demonstrate the importance of belowground allocation to the C cycle of terrestrial ecosystems.
49

Two Dimensional Hydrodynamic Numerical Simulation of Flow Around Chevrons

Khanal, Anish 01 May 2012 (has links)
A chevron is a U-shaped rock structure constructed for improving navigation conditions by diverting majority of flow towards main channel. The objective of this study is to improve understanding of how chevrons affect channel flow. For this study, a two-dimensional numerical hydrodynamic model of a two-km-long reach of the Mississippi River was developed; three chevrons have been constructed in the modeled reach. The model was calibrated by adjusting Manning's n to match predicted and observed water surface elevations (WSELs). The model was validated using measured WSEL and velocity data from two events: a low-flow discharge (4,500 m3/s) and high-flow discharge (14,000 m3/s). At reach scale the model performed well in predicting WSELs. Average difference between model prediction and observed WSEL was 0.23 m in low-flow condition and 0.05 in high flow condition. Root mean square of errors (RMSEs) and mean absolute errors (MAEs) were used to measure the degree of agreement between predicted and measured velocities. At the reach scale there was reasonable agreement between predicted and observed velocities (RMSE = 0.416 m/s and 0.425 m/s, respectively, for low-flow and high-flow conditions). Local differences between predicted and observed velocities were up to 1.5 m/s; this is attributed to uncertainties in the velocity measurements. The model's sensitivity of to changes in Manning's n, eddy viscosity and bathymetry were also analyzed. The sensitivity analysis showed that there are specific areas (e.g., near the banks of the river) which are sensitive to changes in Manning's n. This indicates that spatial distribution of Manning's n is required to increase the accuracy in the model's predictions of velocity. Model was found to be stable in a specific range of eddy viscosity values. Eddy viscosity had little effect on velocity predictions but was important for model stability (i.e., the model was stable only for a range of eddy viscosity values). Reach scale changes in bathymetry had minor impacts on RMSE and MAE. However, local changes in channel bathymetry resulted in differences in velocity predictions as much as ±0.4 m/s.
50

The Instrumentation of Primary Roof Bolts in a Room-and-Pillar Mine and the Modeling of their Performance

Kostecki, Todd 01 May 2013 (has links)
This thesis is directed towards the comparison of active and passive bolts systems to reveal which system shows the most favorable behavior for improved performance, safety and cost. This was achieved through the incorporation of new technologies, field data, numerical modeling and established theories in ground control analysis. All in all, a better understanding of the quasi-static behavior of underground coal mine roofs has been attained. Over the summer of 2010, the Department of Mining and Mineral Resource Engineering at Southern Illinois University Carbondale, in conjunction with Andy Hyett of YieldPoint Inc., Peabody and the National Institute of Occupational Safety and Health (NIOSH), installed over one hundred and seventy instrumented extensometers, closure meters, shear-meters, passive rebar roof bolts, tension rebar roof bolts, and double lock rebar roof bolts at three coal mines. Two of the three coal mines were room-and-pillar mines and the other a longwall mine. Data was routinely collected over a nine-month period to analyze shearing, dilation, and axial bolt loading occurring within the rock mass, and entry closure occurring between the excavation hanging-wall and foot-wall. Based on bolt loadings, shear, axial behavior and statistical analysis, initial results indicate that active roof bolts do not show superior performance for the added cost. Active bolts seem to show no difference from passive bolts in the initial loading phase either, indicating that tension bleed-off is a concern soon after installation; however, this observation was not captured, as the data loggers were not intrinsically safe. Considering the modeling results, the trends in axial loading seem to be calibrated but the magnitudes are not. Computer modeling also shows the potential to accurately model in situ bolt performance; however, challenges remain in obtaining a good match between numerical modeling and field observations.

Page generated in 0.0518 seconds