Spelling suggestions: "subject:"[een] NUMERICAL MODELING"" "subject:"[enn] NUMERICAL MODELING""
71 |
Exploring the relationship between crustal permeability and hydrothermal venting at mid-ocean ridges using numerical modelsSingh, Shreya 16 June 2015 (has links)
Hydrothermal systems associated with oceanic spreading centers account for a quarter of Earth's total heat flux and one third of the heat flux through the ocean floor. Circulation of seawater through these systems alters both the crust and the circulating fluid, impacting global geochemical cycles. The warm vent fluids rich in nutrients support a wide variety of unique biological communities. Thus, understanding hydrothermal processes at oceanic spreading centers is important to provide insight into thermal and biogeochemical processes. In this dissertation I present the results of numerical modeling efforts for mid-ocean ridge hydrothermal systems. In the three manuscripts presented, permeability emerges as a key controlling factor for hydrothermal venting. In the first manuscript, I use 2-D numerical models to find that the distribution of permeability in the crust controls fluid velocity as well as the amount of mixing between hot hydrothermal fluids and cold seawater. This, in turn, effects the temperature and composition of fluids emerging on the surface. For the second manuscript, I construct single-pass 1-D models to show that a sudden increase in permeability caused due to magmatic or seismic events in the seafloor causes a sharp rise in the fluid output of the system. This, in conjunction with steep thermal gradients close to the surface, results in a rapid increase of venting temperatures. In the third manuscript, I develop a particle tracking model to study fluid trajectories in the subsurface. The results show that permeability distribution in the subsurface governs fluid paths and consequently, the residence time of fluids in the crust. Based on the work presented in this document, I conclude that permeability distribution, both local and field scale, exerts a major control on hydrothermal circulation in the subsurface and on the temperature and composition of venting fluids on the surface. / Ph. D.
|
72 |
The MEso-SCAle Particle Transport model (MESCAPT) for studying sediment dynamics during storms and tsunamisCheng, Wei 12 December 2015 (has links)
Tsunamis and storms are the most devastating coastal hazards that can cause great loss of life and infrastructure damage. To assess tsunami and storm hazard, the magnitude and frequency of each type of event are needed. However, major tsunamis and storms are very infrequent, especially tsunamis, and the only reliable record is the deposits they leave behind. Tsunami and storm deposits can be used to calculate the magnitudes of the respective event, and to contribute to the hazard frequency where there is no historical records. Therefore, for locations where both events could occur, it is crucial to differentiate between the two types of events. Existing studies on the similarities and differences between the two types of deposits all suffer from paucity of the number of events and field data, and a wide range of initial conditions, and thus an unequivocal set of distinguishing deposit characteristics has not been identified yet. In this study, we aim to tackle the problem with the MEso-SCAle Particle Transport model (MESCAPT) that combines the advantages of concentration-based Eulerian methods and particle-based method. The advantage of the former is efficiency and the latter is detailed sediment transport and deposit information. Instead of modeling individual particles, we assume that a group of sediment grains travel and deposit together, which is called a meso-scale particle. This allows simulation domains that are large enough for tsunami and storm wave propagation and inundation. The sediment transport model is coupled with a hydrodynamic model based on the shallow water equations. Simulation results of a case study show good agreements with field measurements of deposits left behind by the 2004 Indian Ocean Tsunami. Idealized tsunami and storm case studies demonstrate the model's capabilities of reproducing morphological changes, as well as microscopic grain-size trends. / Ph. D.
|
73 |
Numerical Modeling of the Hydrothermal System at East Pacific Rise (EPR) 9 Degrees 50' N Including Anhydrite PrecipitationKolandaivelu, Kannikha Parameswari 09 July 2015 (has links)
Seafloor hydrothermal systems have been intensively studied for the past few decades; however, the location of recharge zones and details of fluid circulation patterns are still largely uncertain. To better understand the effects of anhydrite precipitation on hydrothermal flow paths, we conduct 2-D numerical simulations of hydrothermal circulation at a mid-ocean ridge using a NaCl-H2O numerical code. The simulations focus on East Pacific Rise hydrothermal system at 950N due to availability of key observational data to constrain the models. Seismicity data that is available suggests that fluid flow is primarily along axis and that recharge is focused into a small zone near a 4th order discontinuity in the ridge axis.
Simulations are carried out in an open-top square box 1500 m on a side maintained at a surface pressure of 25 MPa, and nominal seawater temperature of 10 C. The sides of the box are assumed to be impermeable and insulated. A constant temperature distribution is maintained along the bottom of the box consisting of a 1000 m long central-heated region maintained at 450 C to represent the axial magma chamber and ensure P-T conditions for phase separation; a linearly decreasing temperature profile from 450 to 300 C is maintained along the 250 m long segments adjacent to the heated region to delineate the recharge zone. We constructed a homogeneous model with a uniform cell size of 25 m with a permeability of 10-13 m2 and a similar model with a 200 m thick layer 2A region with a permeability of 10-12 m2. For the homogeneous model the simulations were run for 100 years to approximate steady state conditions and the model with layer 2A was run for 50 years. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, the rate of porosity decrease and sealing time was calculated at 50 and 100 years. The results showed that sealing occurred most rapidly at the bottom of the recharge areas near the base of the high-temperature plumes, where complete sealing occurred after ~55-625 years for an initial porosity of 0.1. The simulations also suggested that sealing would occur more slowly at the margins of the ascending plumes, with times ranging between ~ 80 and 5000 years.
The sealing times in the deep recharge zone determined in these simulations are considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 950N site may occur, at least on a decadal time scale. More detailed analyses are needed to determine whether such focused recharge can be maintained for longer times. / Master of Science
|
74 |
Determination of the location of the groundwater divide and nature of groundwater flow paths within a region of active stream capture; the New River watershedFunkhouser, Lyndsey Karin 12 June 2014 (has links)
The relatively rapid stream capture of the New River basin by the Roanoke River basin provides a unique example of topographic change within a tectonically inactive environment. A previous investigation of abandoned river deposits has shown the capture of ~225 km2 of New River basin area, which has caused approximately 250 m of incision by the Roanoke River (Prince et al., 2011). Difference in base level elevations between the lower Roanoke to the higher New River could be the source of potential energy driving rapid incision (Prince et al., 2011). Significant incongruities in base level elevations at the boundaries of an aquifer can steepen the gradient and shift the groundwater divide further toward the higher elevation boundary (Yechieli et al., 2009).
If a steep groundwater gradient and expanded groundwater basin exists beneath the Roanoke River tributaries, this would suggest a groundwater control on incision and capture. In this investigation we incorporate average total head, measured from 18 domestic wells, and constant-head river boundary conditions into numerical models to calculate water levels and gradients between the rivers. We also utilized thermal patterns and particle tracking of spring locations to better understand flow paths in the region. Our results show the groundwater divide is shifted toward the higher elevation boundary, indicating that the groundwater basin is captured prior to surface capture. Flow pathways utilized by groundwater capture can be either diffuse or conduits, however further work should be done to better understand travel times and flow depths. / Master of Science
|
75 |
A Numerical Investigation of the Seismic Response of the Aggregate Pier Foundation SystemGirsang, Christian Hariady 02 January 2002 (has links)
The response of an aggregate pier foundation system during seismic loading was investigated. The factors and phenomena governing the performance of the aggregate pier and the improved ground were identified and clarified. The key factors affecting the performance of the aggregate pier include soil density, stiffness modulus, and drainage capacity. The improved ground is influenced by soil stratification, soil properties, pore pressure dissipation, and earthquake time history.
Comprehensive numerical modeling using FLAC were performed. The focus of the study in this research was divided into three parts: the studies of the ground acceleration, the excess pore water pressure ratio and the shear stress in soil matrix generated during seismic loading. Two earthquake time histories scaled to different peak acceleration were used in the numerical modeling: the 1989 Loma Prieta earthquake (pga = 0.45g) and the 1988 Saguenay earthquake (pga = 0.05g).
The main results of the simulation showed the following effects of aggregate pier on liquefiable soil deposits: 1) The aggregate pier amplifies the peak horizontal acceleration on the ground surface (amax), 2) The aggregate pier reduces the liquefaction potential up to depth where it is installed, 3) Pore pressures are generally lower for soils reinforced with aggregate pier than unreinforced soils except for very strong earthquake, 4) The maximum shear stresses in soil are much smaller for reinforced soils than unreinforced soils.
The excess pore water pressure ratio and the shear stress in the soil matrix calculated by FLAC were generally lower than those predicted by available procedures. / Master of Science
|
76 |
Numerical Modeling of River Diversions in the Lower Mississippi RiverPereira, Joao Miguel Faisca Rodrigues 20 May 2011 (has links)
The presence of man-made levees along the Lower Mississippi River (MR) has significantly reduced the River sediment input to the wetlands and much of the River's sediment is now lost to the Gulf of Mexico. The sediment load in the River has also been decreased by dams and river revetments along the Upper MR. Freshwater and sediment diversions are possible options to help combat land loss. Numerical modeling of hydrodynamics and sediment transport of the MR is a useful tool to evaluate restoration projects and to improve our understanding of the resulting River response. The emphasis of this study is on the fate of sand in the river and the distributaries. A 3-D unsteady flow mobile-bed model (ECOMSED; HydroQual 2002) of the Lower MR reach between Belle Chasse (RM 76) and downstream of Main Pass (RM 3) was calibrated using field sediment data from 2008 – 2010 (Nittrouer et al. 2008; Allison, 2010). The model was used to simulate River currents, diversion sand capture efficiency, erosional and depositional patterns with and without diversions over a short period of time (weeks). The introduction of new diversions at different locations, e.g., Myrtle Grove (RM 59) and Belair (RM 65), with different geometries and with different outflows was studied. A 1-D unsteady flow mobile-bed model (CHARIMA; Holly et al. 1990) was used to model the same Lower MR reach. This model was used for longer term simulations (months). The simulated diversions varied from 28 m3/s (1, 000 cfs) to 5, 700 m3/s (200, 000 cfs) for river flows up to 35, 000 m3/s (1.2x106 cfs). The model showed that the smaller diversions had little impact on the downstream sand transport. However, the larger diversions had the following effects: 1) reduction in the slope of the hydraulic grade line downstream of the diversion; 2) reduction in the available energy for transport of sand along distributary channels; 3) reduced sand transport capacity in the main channel downstream of the diversion; 4) increased shoaling downstream of the diversion; and 5) a tendency for erosion and possible head-cutting upstream of the diversion.
|
77 |
Heat and Mass Transfer in Baled Switchgrass for Storage and Bioconversion ApplicationsSchiavone, Drew F. 01 January 2016 (has links)
The temperature and moisture content of biomass feedstocks both play a critical role in minimizing storage and transportation costs, achieving effective bioconversion, and developing relevant postharvest quality models. Hence, this study characterizes the heat and mass transfer occurring within baled switchgrass through the development of a mathematical model describing the relevant thermal and physical properties of this specific substrate. This mathematical model accounts for the effect of internal heat generation and temperature-induced free convection within the material in order to improve prediction accuracy. Inclusion of these terms is considered novel in terms of similar biomass models.
Two disparate length scales, characterizing both the overall bale structure (global domain) and the individual stems (local domain), are considered with different physical processes occurring on each scale. Material and fluid properties were based on the results of hydraulic conductivity experiments, moisture measurements and thermal analyses that were performed using the constant head method, TDR-based sensors and dual thermal probes, respectively. The unique contributions made by each of these components are also discussed in terms of their particular application within various storage and bioconversion operations.
Model validation was performed with rectangular bales of switchgrass (102 x 46 x 36 cm3) stored in an environmental chamber with and without partial insulation to control directional heat transfer. Bale temperatures generally exhibited the same trend as ambient air; although initial periods of microbial growth and heat generation were observed. Moisture content uniformly declined during storage, thereby contributing to minimal heat generation in the latter phases of storage.
The mathematical model agreed closely with experimental data for low moisture content levels in terms of describing the temperature and moisture distribution within the material. The inclusion of internal heat generation was found to be necessary for improving the prediction accuracy of the model; particularly in the initial stage of storage. However, the effects of natural convection exhibited minimal contribution to the heat transfer as conduction was observed as the predominate mechanism occurring throughout storage. The results of this study and the newly developed model are expected to enable the maintenance of baled biomass quality during storage and/or high-solids bioconversion.
|
78 |
Power distribution network modeling and microfluidic cooling for high-performance computing systemsZheng, Li 07 January 2016 (has links)
A silicon interposer platform with microfluidic cooling is proposed for high-performance computing systems. The key components and technologies for the proposed platform, including electrical and fluidic microbumps, microfluidic vias and heat sinks, and simultaneous flip-chip bonding of the electrical and fluidic microbumps, are developed and demonstrated. Fine-pitch electrical microbumps of 25 µm diameter and 50 µm pitch, fluidic vias of 100 µm diameter, and annular-shaped fluidic microbumps of 150 µm inner diameter and 210 µm outer diameter were fabricated and bonded. Electrical and fluidic tests were conducted to verify the bonding results. Moreover, the thermal and signaling benefits of the proposed platform were evaluated based on thermal measurements and simulations, and signaling simulations. Compared to the conventional air cooling, significant reductions in system temperature and thermal coupling are achieved with the proposed platform. Moreover, the signaling performance is improved due to the reduced temperature, especially for long interconnects on the silicon interposer.
A numerical power distribution network (PDN) simulator is developed based on distributed circuit models for on-die power/ground grids, package- and board- level power/ground planes, and the finite difference method. The simulator enables power supply noise simulation, including IR-drop and simultaneous switching noise, for a full chip with multiple blocks of different power, decoupling capacitor, and power/ground pad densities. The distributed circuit model is further extended to include TSVs to enable simulations for 3D PDN. The integration of package- and board- level power/ground planes enables co-simulation of die-package-board PDN and exploration of new PDN configurations.
|
79 |
Numerical modelling for hydrodynamic impact and power assessments of tidal current turbine arraysRoc, Thomas January 2013 (has links)
Channel constrictions in which strong currents are mainly driven by tidal processes represent sites with high potential for harvesting renewable and predictable tidal stream energy. Tidal Current Turbines (TCTs) deployed in arrays appear to be the most promising solution to efficiently capturing this carbon neutral energy resource. However to ensure the sustainable character of such projects, the balance between power extraction maximization and environmental impact minimization must be found so that device layout optimization takes into account environmental considerations. This is particularly appropriate since both resource and impact assessments go intrinsically hand in hand. The present method proposes the use and adaptation of ocean circulation models as an assessment tool framework for tidal current turbine (TCT) array-layout optimization. By adapting both momentum and turbulence transport equations of an existing model, the present TCT representation method is proposed to extend the actuator disc concept to 3-D large scale ocean circulation models. Through the reproduction of physical experiments to reasonable accuracy, grid and time dependency tests and an up-scaling exercise, this method has shown its numerical validity as well as its ability to simulate accurately both momentum and turbulent turbine-induced perturbations in the wake. These capabilities are demonstrated for standalone devices and device arrays, and are achieved with a relatively short period of computation time. Consequently the present TCT representation method is a very promising basis for the development of a TCT array layout optimization tool. By applying this TCT representation method to realistic cases, its capability is demonstrated for power capture assessment and prediction of hydrodynamic interactions as would be required during the layout deployment optimization process. Tidal energy has seen considerable development over the last decade and the first commercial deployments are likely to take place within the next 5 years. It is hoped that this new tool and the numerical approaches described herein will contribute to the development of TCT array power plants around the world.
|
80 |
Numerical modelling of positive electrical discharges in long air gapsDiaz, Oscar January 2016 (has links)
This dissertation deals with research on the numerical modelling of electrical discharges in laboratory long air gaps excited with positive switching impulses. It begins with the preliminary work of several scientists during the last decades, making a detailed analysis of different approaches for modelling all the stages in a full discharge. The relations between these models are identified as well as the effect on the outcome when modifying some important input parameters. The general concept describing the discharge phenomenon usually includes three main elements: the streamer inception, the streamer-to-leader transition and the stable leader propagation. These elements are present in many of the analysed models and the main differences between them are the assumptions and simplifications made by each author at a specific point in their methodologies. The models are usually simplified by assigning experimentally determined values to physical constants pertinent to different stages of the full discharge. These constants are the potential gradient in the leader-corona region to sustain the leader propagation, the charge per unit length along the leader channel which depends on the atmospheric conditions and the voltage impulse wave shape; and the leader propagation velocity, which is closely related to the discharge current. The dissertation includes the results of laboratory work related the study of leaders in long gap discharges, electrical parameters and optical records. By reconstructing the three-dimensional leader propagation for the rod-to-plane configuration, it was possible to study the random tortuous path followed by the leader as it propagates. One important element included in the discharge modelling is the representation of the leader-corona region in front of the leader tip as it propagates towards the grounded electrode. For the calculation of the net charge available in the leader-corona region, two new methodologies were pro-posed based on the electrostatic potential distribution obtained from a finite element method solver. This allowed the inclusion of more elements representing different parts of the discharge in the simulation domain. In the final part, all the analysed elements and the new proposed ones were included in a new methodology for the modelling of electrical dis-charges in long air laboratory gaps. The results obtained from this methodology were compared to experimental data. A good agreement was found between the simulation results and the experimental data.
|
Page generated in 0.0479 seconds