• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 42
  • 19
  • 13
  • 10
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 479
  • 479
  • 223
  • 197
  • 160
  • 122
  • 104
  • 103
  • 98
  • 79
  • 66
  • 65
  • 65
  • 64
  • 63
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Detection and counting of Powered Two Wheelers in traffic using a single-plane Laser Scanner

Prabhakar, Yadu 10 October 2013 (has links) (PDF)
The safety of Powered Two Wheelers (PTWs) is important for public authorities and roadadministrators around the world. Recent official figures show that PTWs are estimated to represent only 2% of the total traffic but represent 30% of total deaths on French roads. However, as these estimated figures are obtained by simply counting the number plates registered, they do not give a true picture of the PTWs on the road at any given moment. This dissertation comes under the project METRAMOTO and is a technical applied research work and deals with two problems: detection of PTWsand the use of a laser scanner to count PTWs in the traffic. Traffic generally contains random vehicles of unknown nature and behaviour such as speed,vehicle interaction with other users on the road etc. Even though there are several technologies that can measure traffic, for example radars, cameras, magnetometers etc, as the PTWs are small-sized vehicles, they often move in between lanes and at quite a high speed compared to the vehicles moving in the adjacent lanes. This makes them difficult to detect. the proposed solution in this research work is composed of the following parts: a configuration to install the laser scanner on the road is chosen and a data coherence method is introduced so that the system is able to detect the road verges and its own height above the road surface. This is validated by simulator. Then the rawd ata obtained is pre-processed and is transform into the spatial temporal domain. Following this, an extraction algorithm called the Last Line Check (LLC) method is proposed. Once extracted, the objectis classified using one of the two classifiers either the Support Vector Machine (SVM) or the k-Nearest Neighbour (KNN). At the end, the results given by each of the two classifiers are compared and presented in this research work. The proposed solution in this research work is a propototype that is intended to be integrated in a real time system that can be installed on a highway to detect, extract, classify and counts PTWs in real time under all traffic conditions (traffic at normal speeds, dense traffic and even traffic jams).
292

Segmentation and structuring of video documents for indexing applications

Tapu, Ruxandra Georgina 07 December 2012 (has links) (PDF)
Recent advances in telecommunications, collaborated with the development of image and video processing and acquisition devices has lead to a spectacular growth of the amount of the visual content data stored, transmitted and exchanged over Internet. Within this context, elaborating efficient tools to access, browse and retrieve video content has become a crucial challenge. In Chapter 2 we introduce and validate a novel shot boundary detection algorithm able to identify abrupt and gradual transitions. The technique is based on an enhanced graph partition model, combined with a multi-resolution analysis and a non-linear filtering operation. The global computational complexity is reduced by implementing a two-pass approach strategy. In Chapter 3 the video abstraction problem is considered. In our case, we have developed a keyframe representation system that extracts a variable number of images from each detected shot, depending on the visual content variation. The Chapter 4 deals with the issue of high level semantic segmentation into scenes. Here, a novel scene/DVD chapter detection method is introduced and validated. Spatio-temporal coherent shots are clustered into the same scene based on a set of temporal constraints, adaptive thresholds and neutralized shots. Chapter 5 considers the issue of object detection and segmentation. Here we introduce a novel spatio-temporal visual saliency system based on: region contrast, interest points correspondence, geometric transforms, motion classes' estimation and regions temporal consistency. The proposed technique is extended on 3D videos by representing the stereoscopic perception as a 2D video and its associated depth
293

Object detection algorithms analysis and implementation for augmented reality system / Objecktų aptikimo algoritmai, jų analizė ir pritaikymas papildytosios realybės sistemoje

Zavistanavičiūtė, Rasa 05 November 2013 (has links)
Object detection is the initial step in any image analysis procedure and is essential for the performance of object recognition and augmented reality systems. Research concerning the detection of edges and blobs is particularly rich and many algorithms or methods have been proposed in the literature. This master‟s thesis presents 4 most common blob and edge detectors, proposes method for detected numbers separation and describes the experimental setup and results of object detection and detected numbers separation performance. Finally, we determine which detector demonstrates the best results for mobile augmented reality system. / Objektų aptikimas yra pagrindinis žingsnis vaizdų analizės procese ir yra pagrindinis veiksnys apibrėžiantis našumą objektų atpažinimo ir papildytosios realybės sistemose. Literatūroje gausu metodų ir algoritmų aprašančių sričių ir ribų aptikimą. Šiame magistro laipsnio darbe aprašomi 4 dažniausiai naudojami sričių ir ribų aptikimo algoritmai, pasiūlomas metodas aptiktų skaičių atskyrimo problemai išspręsti. Pateikiami atliktų eksperimentų rezultatai, palyginmas šių algoritmų našumas. Galiausiai yra nustatoma, kuris iš jų yra geriausias.
294

Automated video-based measurement of eye closure using a remote camera for detecting drowsiness and behavioural microsleeps

Malla, Amol Man January 2008 (has links)
A device capable of continuously monitoring an individual’s levels of alertness in real-time is highly desirable for preventing drowsiness and lapse related accidents. This thesis presents the development of a non-intrusive and light-insensitive video-based system that uses computer-vision methods to localize face, eyes, and eyelids positions to measure level of eye closure within an image, which, in turn, can be used to identify visible facial signs associated with drowsiness and behavioural microsleeps. The system was developed to be non-intrusive and light-insensitive to make it practical and end-user compliant. To non-intrusively monitor the subject without constraining their movement, the video was collected by placing a camera, a near-infrared (NIR) illumination source, and an NIR-pass optical filter at an eye-to-camera distance of 60 cm from the subject. The NIR-illumination source and filter make the system insensitive to lighting conditions, allowing it to operate in both ambient light and complete darkness without visually distracting the subject. To determine the image characteristics and to quantitatively evaluate the developed methods, reference videos of nine subjects were recorded under four different lighting conditions with the subjects exhibiting several levels of eye closure, head orientations, and eye gaze. For each subject, a set of 66 frontal face reference images was selected and manually annotated with multiple face and eye features. The eye-closure measurement system was developed using a top-down passive feature-detection approach, in which the face region of interest (fROI), eye regions of interests (eROIs), eyes, and eyelid positions were sequentially localized. The fROI was localized using an existing Haar-object detection algorithm. In addition, a Kalman filter was used to stabilize and track the fROI in the video. The left and the right eROIs were localized by scaling the fROI with corresponding proportional anthropometric constants. The position of an eye within each eROI was detected by applying a template-matching method in which a pre-formed eye-template image was cross-correlated with the sub-images derived from the eROI. Once the eye position was determined, the positions of the upper and lower eyelids were detected using a vertical integral-projection of the eROI. The detected positions of the eyelids were then used to measure eye closure. The detection of fROI and eROI was very reliable for frontal-face images, which was considered sufficient for an alertness monitoring system as subjects are most likely facing straight ahead when they are drowsy or about to have microsleep. Estimation of the y- coordinates of the eye, upper eyelid, and lower eyelid positions showed average median errors of 1.7, 1.4, and 2.1 pixels and average 90th percentile (worst-case) errors of 3.2, 2.7, and 6.9 pixels, respectively (1 pixel 1.3 mm in reference images). The average height of a fully open eye in the reference database was 14.2 pixels. The average median and 90th percentile errors of the eye and eyelid detection methods were reasonably low except for the 90th percentile error of the lower eyelid detection method. Poor estimation of the lower eyelid was the primary limitation for accurate eye-closure measurement. The median error of fractional eye-closure (EC) estimation (i.e., the ratio of closed portions of an eye to average height when the eye is fully open) was 0.15, which was sufficient to distinguish between the eyes being fully open, half closed, or fully closed. However, compounding errors in the facial-feature detection methods resulted in a 90th percentile EC estimation error of 0.42, which was too high to reliably determine extent of eye-closure. The eye-closure measurement system was relatively robust to variation in facial-features except for spectacles, for which reflections can saturate much of the eye-image. Therefore, in its current state, the eye-closure measurement system requires further development before it could be used with confidence for monitoring drowsiness and detecting microsleeps.
295

Objektų Pozicijos ir Orientacijos Nustatymo Metodų Mobiliam Robotui Efektyvumo Tyrimas / Efficiency Analysis of Object Position and Orientation Detection Algorithms for Mobile Robot

Uktveris, Tomas 18 August 2014 (has links)
Šiame darbe tiriami algoritminiai sprendimai mobiliam robotui, leidžiantys aptikti ieškomą objektą bei įvertinti jo poziciją ir orientaciją erdvėje. Atlikus šios srities technologijų analizę surasta įvairių realizacijai tinkamų metodų, tačiau bendro jų efektyvumo palyginimo trūko. Siekiant užpildyti šią spragą realizuota programinė ir techninė įranga, kuria atliktas labiausiai roboto sistemoms tinkamų metodų vertinimas. Algoritmų analizė susideda iš algoritmų tikslumo ir jų veikimo spartos vertinimo panaudojant tam paprastus bei efektyvius metodus. Darbe analizuojamas objektų orientacijos nustatymas iš Kinect kameros gylio duomenų pasitelkiant ICP algoritmą. Atliktas dviejų gylio sistemų spartos ir tikslumo tyrimas parodė, jog Kinect kamera spartos atžvilgiu yra efektyvesnis bei 2-5 kartus tikslesnis sprendimas nei įprastinė stereo kamerų sistema. Objektų aptikimo algoritmų efektyvumo eksperimentuose nustatytas maksimalus aptikimo tikslumas apie 90% bei pasiekta maksimali 15 kadrų/s veikimo sparta analizuojant standartinius VGA 640x480 raiškos vaizdus. Atliktas objektų pozicijos ir orientacijos nustatymo ICP metodo efektyvumo tyrimas parodė, jog vidutinė absoliutinė pozicijos ir orientacijos nustatymo paklaida yra atitinkamai apie 3.4cm bei apie 30 laipsnių, o veikimo sparta apie 2 kadrai/s. Tolesnis optimizavimas arba duomenų kiekio minimizavimas yra būtinas norint pasiekti geresnius veikimo rezultatus mobilioje ribotų resursų roboto sistemoje. Darbe taip pat buvo sėkmingai... [toliau žr. visą tekstą] / This work presents a performance analysis of the state-of-the-art computer vision algorithms for object detection and pose estimation. Initial field study showed that many algorithms for the given problem exist but still their combined comparison was lacking. In order to fill in the existing gap a software and hardware solution was created and the comparison of the most suitable methods for a robot system were done. The analysis consists of detector accuracy and runtime performance evaluation using simple and robust techniques. Object pose estimation via ICP algorithm and stereo vision Kinect depth sensor method was used in this work. A conducted two different stereo system analysis showed that Kinect achieves best runtime performance and its accuracy is 2-5 times more superior than a regular stereo setup. Object detection experiments showcased a maximum object detection accuracy of nearly 90% and speed of 15 fps for standard size VGA 640x480 resolution images. Accomplished object position and orientation estimation experiment using ICP method showed, that average absolute position and orientation detection error is respectively 3.4cm and 30 degrees while the runtime speed – 2 fps. Further optimization and data size minimization is necessary to achieve better efficiency on a resource limited mobile robot platform. The robot hardware system was also successfully implemented and tested in this work for object position and orientation detection.
296

[en] A METHOD FOR REAL-TIME OBJECT DETECTION IN HD VIDEOS / [pt] UM MÉTODO PARA DETECÇÃO EM TEMPO REAL DE OBJETOS EM VÍDEOS DE ALTA DEFINIÇÃO

GUSTAVO COSTA GOMES MOREIRA 29 April 2015 (has links)
[pt] A detecção e o subsequente rastreamento de objetos em sequencias de vídeo é um desafio no que tange o processamento de vídeos em tempo real. Nesta tese propomos um método de detecção em tempo real adequado para o processamento de vídeos de alta definição. Neste método utilizamos um procedimento de segmentação de quadros usando as imagens integrais de frente, o que permite o rápido descarte de várias partes da imagem a cada quadro, desta maneira atingindo uma alta taxa de quadros processados por segundo. Estendemos ainda o algoritmo proposto para que seja possível detectar múltiplos objetos em paralelo. Além disto, através da utilização de uma GPU e técnicas que podem ter seu desempenho aumentado por meio de paralelismo, como o operador prefix sum, conseguimos atingir um desempenho ainda melhor do algoritmo, tanto para a detecção do objeto, como na etapa de treinamento de novas classes de objetos. / [en] The detection and subsequent tracking of objects in video sequences is a challenge in terms of video processing in real time. In this thesis we propose an detection method suitable for processing high-definition video in real-time. In this method we use a segmentation procedure through integral image of the foreground, which allows a very quick disposal of various parts of the image in each frame, thus achieving a high rate of processed frames per second. Further we extend the proposed method to be able to detect multiple objects in parallel. Furthermore, by using a GPU and techniques that can have its performance enhanced through parallelism, as the operator prefix sum, we can achieve an even better performance of the algorithm, both for the detection of the object, as in the training stage of new classes of objects.
297

Gestion de données manquantes dans des cascades de boosting : application à la détection de visages / Management of missing data in boosting cascades : application to face detection

Bouges, Pierre 06 December 2012 (has links)
Ce mémoire présente les travaux réalisés dans le cadre de ma thèse. Celle-ci a été menée dans le groupe ISPR (ImageS, Perception systems and Robotics) de l’Institut Pascal au sein de l’équipe ComSee (Computers that See). Ces travaux s’inscrivent dans le cadre du projet Bio Rafale initié par la société clermontoise Vesalis et financé par OSEO. Son but est d’améliorer la sécurité dans les stades en s’appuyant sur l’identification des interdits de stade. Les applications des travaux de cette thèse concernent la détection de visages. Elle représente la première étape de la chaîne de traitement du projet. Les détecteurs les plus performants utilisent une cascade de classifieurs boostés. La notion de cascade fait référence à une succession séquentielle de plusieurs classifieurs. Le boosting, quant à lui, représente un ensemble d’algorithmes d’apprentissage automatique qui combinent linéairement plusieurs classifieurs faibles. Le détecteur retenu pour cette thèse utilise également une cascade de classifieurs boostés. L’apprentissage d’une telle cascade nécessite une base d’apprentissage ainsi qu’un descripteur d’images. Cette description des images est ici assurée par des matrices de covariance. La phase d’apprentissage d’un détecteur d’objets détermine ces conditions d’utilisation. Une de nos contributions est d’adapter un détecteur à des conditions d’utilisation non prévues par l’apprentissage. Les adaptations visées aboutissent à un problème de classification avec données manquantes. Une formulation probabiliste de la structure en cascade est alors utilisée pour incorporer les incertitudes introduites par ces données manquantes. Cette formulation nécessite l’estimation de probabilités a posteriori ainsi que le calcul de nouveaux seuils à chaque niveau de la cascade modifiée. Pour ces deux problèmes, plusieurs solutions sont proposées et de nombreux tests sont effectués pour déterminer la meilleure configuration. Enfin, les applications suivantes sont présentées : détection de visages tournés ou occultés à partir d’un détecteur de visages de face. L’adaptation du détecteur aux visages tournés nécessite l’utilisation d’un modèle géométrique 3D pour ajuster les positions des sous-fenêtres associées aux classifieurs faibles. / This thesis has been realized in the ISPR group (ImageS, Perception systems and Robotics) of the Institut Pascal with the ComSee team (Computers that See). My research is involved in a project called Bio Rafale. It was created by the compagny Vesalis in 2008 and it is funded by OSEO. Its goal is to improve the security in stadium using identification of dangerous fans. The applications of these works deal with face detection. It is the first step in the process chain of the project. Most efficient detectors use a cascade of boosted classifiers. The term cascade refers to a sequential succession of several classifiers. The term boosting refers to a set of learning algorithms that linearly combine several weak classifiers. The detector selected for this thesis also uses a cascade of boosted classifiers. The training of such a cascade needs a training database and an image feature. Here, covariance matrices are used as image feature. The limits of an object detector are fixed by its training stage. One of our contributions is to adapt an object detector to handle some of its limits. The proposed adaptations lead to a problem of classification with missing data. A probabilistic formulation of a cascade is then used to incorporate the uncertainty introduced by the missing data. This formulation involves the estimation of a posteriori probabilities and the computation of new rejection thresholds at each level of the modified cascade. For these two problems, several solutions are proposed and extensive tests are done to find the best configuration. Finally, our solution is applied to the detection of turned or occluded faces using just an uprigth face detector. Detecting the turned faces requires the use of a 3D geometric model to adjust the position of the subwindow associated with each weak classifier.
298

Information fusion for scene understanding / Fusion d'informations pour la compréhesion de scènes

Xu, Philippe 28 November 2014 (has links)
La compréhension d'image est un problème majeur de la robotique moderne, la vision par ordinateur et l'apprentissage automatique. En particulier, dans le cas des systèmes avancés d'aide à la conduite, la compréhension de scènes routières est très importante. Afin de pouvoir reconnaître le grand nombre d’objets pouvant être présents dans la scène, plusieurs capteurs et algorithmes de classification doivent être utilisés. Afin de pouvoir profiter au mieux des méthodes existantes, nous traitons le problème de la compréhension de scènes comme un problème de fusion d'informations. La combinaison d'une grande variété de modules de détection, qui peuvent traiter des classes d'objets différentes et utiliser des représentations distinctes, est faites au niveau d'une image. Nous considérons la compréhension d'image à deux niveaux : la détection d'objets et la segmentation sémantique. La théorie des fonctions de croyance est utilisée afin de modéliser et combiner les sorties de ces modules de détection. Nous mettons l'accent sur la nécessité d'avoir un cadre de fusion suffisamment flexible afin de pouvoir inclure facilement de nouvelles classes d'objets, de nouveaux capteurs et de nouveaux algorithmes de détection d'objets. Dans cette thèse, nous proposons une méthode générale permettant de transformer les sorties d’algorithmes d'apprentissage automatique en fonctions de croyance. Nous étudions, ensuite, la combinaison de détecteurs de piétons en utilisant les données Caltech Pedestrian Detection Benchmark. Enfin, les données du KITTI Vision Benchmark Suite sont utilisées pour valider notre approche dans le cadre d'une fusion multimodale d'informations pour de la segmentation sémantique. / Image understanding is a key issue in modern robotics, computer vison and machine learning. In particular, driving scene understanding is very important in the context of advanced driver assistance systems for intelligent vehicles. In order to recognize the large number of objects that may be found on the road, several sensors and decision algorithms are necessary. To make the most of existing state-of-the-art methods, we address the issue of scene understanding from an information fusion point of view. The combination of many diverse detection modules, which may deal with distinct classes of objects and different data representations, is handled by reasoning in the image space. We consider image understanding at two levels : object detection ans semantic segmentation. The theory of belief functions is used to model and combine the outputs of these detection modules. We emphazise the need of a fusion framework flexible enough to easily include new classes, new sensors and new object detection algorithms. In this thesis, we propose a general method to model the outputs of classical machine learning techniques as belief functions. Next, we apply our framework to the combination of pedestrian detectors using the Caltech Pedestrain Detection Benchmark. The KITTI Vision Benchmark Suite is then used to validate our approach in a semantic segmentation context using multi-modal information
299

Geometrical and contextual scene analysis for object detection and tracking in intelligent vehicles / Analyse de scène contextuelle et géométrique pour la détection et le suivi d'objets dans les véhicules intelligents

Wang, Bihao 08 July 2015 (has links)
Pour les véhicules intelligents autonomes ou semi-autonomes, la perception constitue la première tâche fondamentale à accomplir avant la décision et l’action. Grâce à l’analyse des données vidéo, Lidar et radar, elle fournit une représentation spécifique de l’environnement et de son état, à travers l’extraction de propriétés clés issues des données des capteurs. Comparé à d’autres modalités de perception telles que le GPS, les capteurs inertiels ou les capteurs de distance (Lidar, radar, ultrasons), les caméras offrent la plus grande quantité d’informations. Grâce à leur polyvalence, les caméras permettent aux systèmes intelligents d’extraire à la fois des informations contextuelles de haut niveau et de reconstruire des informations géométriques de la scène observée et ce, à haute vitesse et à faible coût. De plus, la technologie de détection passive des caméras permet une faible consommation d’énergie et facilite leur miniaturisation. L’utilisation des caméras n’est toutefois pas triviale et pose un certain nombre de questions théoriques liées à la façon dont ce capteur perçoit son environnement. Dans cette thèse, nous proposons un système de détection d’objets mobiles basé seule- ment sur l’analyse d’images. En effet, dans les environnements observés par un véhicule intelligent, les objets en mouvement représentent des obstacles avec un risque de collision élevé, et ils doivent être détectés de manière fiable et robuste. Nous abordons le problème de la détection d’objets mobiles à partir de l’extraction du contexte local reposant sur une segmentation de la route. Après transformation de l’image couleur en une image invariante à l’illumination, les ombres peuvent alors être supprimées réduisant ainsi leur influence négative sur la détection d’obstacles. Ainsi, à partir d’une sélection automatique de pixels appartenant à la route, une région d’intérêt où les objets en mouvement peuvent apparaître avec un risque de collision élevé, est extraite. Dans cette zone, les pixels appartenant à des objets mobiles sont ensuite identifiés à l’aide d’une approche plan+parallaxe. À cette fin, les pixels potentiellement mobiles et liés à l’effet de parallaxe sont détectés par une méthode de soustraction du fond de l’image; puis trois contraintes géométriques différentes: la contrainte épipolaire, la contrainte de cohérence structurelle et le tenseur trifocal, sont appliquées à ces pixels pour filtrer ceux issus de l’effet de parallaxe. Des équations de vraisemblance sont aussi proposées afin de combiner les différents contraintes d’une manière complémentaire et efficace. Lorsque la stéréovision est disponible, la segmentation de la route et la détection d’obstacles peuvent être affinées en utilisant une segmentation spécifique de la carte de disparité. De plus, dans ce cas, un algorithme de suivi robuste combinant les informations de l’image et la profondeur des pixels a été proposé. Ainsi, si l’une des deux caméras ne fonctionne plus, le système peut donc revenir dans un mode de fonctionnement monoculaire ce qui constitue une propriété importante pour la fiabilité et l’intégrité du système de perception. Les différents algorithmes proposés ont été testés sur des bases de données d’images publiques en réalisant une évaluation par rapport aux approches de l’état de l’art et en se comparant à des données de vérité terrain. Les résultats obtenus sont prometteurs et montrent que les méthodes proposées sont efficaces et robustes pour différents scénarios routiers et les détections s’avèrent fiables notamment dans des situations ambiguës. / For autonomous or semi-autonomous intelligent vehicles, perception constitutes the first fundamental task to be performed before decision and action/control. Through the analysis of video, Lidar and radar data, it provides a specific representation of the environment and of its state, by extracting key properties from sensor data with time integration of sensor information. Compared to other perception modalities such as GPS, inertial or range sensors (Lidar, radar, ultrasonic), the cameras offer the greatest amount of information. Thanks to their versatility, cameras allow intelligent systems to achieve both high-level contextual and low-level geometrical information about the observed scene, and this is at high speed and low cost. Furthermore, the passive sensing technology of cameras enables low energy consumption and facilitates small size system integration. The use of cameras is however, not trivial and poses a number of theoretical issues related to how this sensor perceives its environmen. In this thesis, we propose a vision-only system for moving object detection. Indeed,within natural and constrained environments observed by an intelligent vehicle, moving objects represent high risk collision obstacles, and have to be handled robustly. We approach the problem of detecting moving objects by first extracting the local contextusing a color-based road segmentation. After transforming the color image into illuminant invariant image, shadows as well as their negative influence on the detection process can be removed. Hence, according to the feature automatically selected onthe road, a region of interest (ROI), where the moving objects can appear with a high collision risk, is extracted. Within this area, the moving pixels are then identified usin ga plane+parallax approach. To this end, the potential moving and parallax pixels a redetected using a background subtraction method; then three different geometrical constraints : the epipolar constraint, the structural consistency constraint and the trifocaltensor are applied to such potential pixels to filter out parallax ones. Likelihood equations are also introduced to combine the constraints in a complementary and effectiveway. When stereo vision is available, the road segmentation and on-road obstacles detection can be refined by means of the disparity map with geometrical cues. Moreover, in this case, a robust tracking algorithm combining image and depth information has been proposed. If one of the two cameras fails, the system can therefore come back to a monocular operation mode, which is an important feature for perception system reliability and integrity. The different proposed algorithms have been tested on public images data set with anevaluation against state-of-the-art approaches and ground-truth data. The obtained results are promising and show that the proposed methods are effective and robust on the different traffic scenarios and can achieve reliable detections in ambiguous situations.
300

Object Detection in Dynamic Background / Détection d’objets dans un fond dynamique

Ali, Imtiaz 05 March 2012 (has links)
La détection et la reconnaissance d’objets dans des vidéos numériques est l’un des principaux challenges dans de nombreuses applications de vidéo surveillance. Dans le cadre de cette thèse, nous nous sommes attaqué au problème difficile de la segmentation d’objets dans des vidéos dont le fond est en mouvement permanent. Il s’agit de situations qui se produisent par exemple lorsque l’on filme des cours d’eau, ou le ciel,ou encore une scène contenant de la fumée, de la pluie, etc. Il s’agit d’un sujet assez peu étudié dans la littérature car très souvent les scènes traitées sont plutôt statiques et seules quelques parties bougent, telles que les feuillages par exemple, ou les seuls mouvements sont des changements de luminosité. La principale difficulté dans le cadre des scènes dont le fond est en mouvement est de différencier le mouvement de l’objet du mouvement du fond qui peuvent parfois être très similaires. En effet, par exemple, un objet dans une rivière peut se déplacer à la même allure que l’eau. Les algorithmes de la littérature extrayant des champs de déplacement échouent alors et ceux basés sur des modélisations de fond génèrent de très nombreuses erreurs. C’est donc dans ce cadre compliqué que nous avons tenté d’apporter des solutions.La segmentation d’objets pouvant se baser sur différents critères : couleur, texture,forme, mouvement, nous avons proposé différentes méthodes prenant en compte un ou plusieurs de ces critères.Dans un premier temps, nous avons travaillé dans un contexte bien précis qui était celui de la détection des bois morts dans des rivières. Ce problème nous a été apporté par des géographes avec qui nous avons collaboré dans le cadre du projet DADEC (Détection Automatique de Débris pour l’Aide à l’Etude des Crues). Dans ce cadre, nous avons proposé deux méthodes l’une dite " naïve " basée sur la couleur des objets à détecter et sur leur mouvement et l’autre, basée sur une approche probabiliste mettant en oeuvre une modélisation de la couleur de l’objet et également basée sur leur déplacement. Nous avons proposé une méthode pour le comptage des bois morts en utilisant les résultats des segmentations.Dans un deuxième temps, supposant la connaissance a priori du mouvement des objets,dans un contexte quelconque, nous avons proposé un modèle de mouvement de l’objet et avons montré que la prise en compte de cet a priori de mouvement permettait d’améliorer nettement les résultats des segmentations obtenus par les principaux algorithmes de modélisation de fond que l’on trouve dans la littérature.Enfin, dans un troisième temps, en s’inspirant de méthodes utilisées pour caractériser des textures 2D, nous avons proposé un modèle de fond basé sur une approche fréquentielle.Plus précisément, le modèle prend en compte non seulement le voisinage spatial d’un pixel mais également le voisinage temporel de ce dernier. Nous avons appliqué la transformée de Fourier locale au voisinage spatiotemporel d’un pixel pour construire un modèle de fond.Nous avons appliqué nos méthodes sur plusieurs vidéos, notamment les vidéos du projet DADEC, les vidéos de la base DynTex, des vidéos synthétiques et des vidéos que nous avons faites. / Moving object detection is one of the main challenges in many video monitoring applications.In this thesis, we address the difficult problem that consists in object segmentation when background moves permanently. Such situations occur when the background contains water flow, smoke or flames, snowfall, rainfall etc. Object detection in moving background was not studied much in the literature so far. Video backgrounds studied in the literature are often composed of static scenes or only contain a small portion of moving regions (for example, fluttering leaves or brightness changes). The main difficulty when we study such situations is to differentiate the objects movements and the background movements that may be almost similar. For example, an object in river moves at the same speed as water. Therefore, motion-based techniques of the literature, relying on displacements vectors in the scene, may fail to discriminate objects from the background, thus generating a lot of false detections. In this complex context, we propose some solutions for object detection.Object segmentation can be based on different criteria including color, texture, shape and motion. We propose various methods taking into account one or more of these criteria.We first work on the specific context of wood detection in rivers. It is a part of DADEC project (Détection Automatique de Débris pour l’Aide à l’Etude des Crues) in collaboration with geographers. We propose two approaches for wood detection: a naïve method and the probabilistic image model. The naïve approach is based on binary decisions based on object color and motion, whereas the probabilistic image model uses wood intensity distribution with pixel motion. Such detection methods are used fortracking and counting pieces of wood in rivers.Secondly, we consider a context in which we suppose a priori knowledge about objectmotion is available. Hence, we propose to model and incorporate this knowledge into the detection process. We show that combining this prior motion knowledge with classical background model improves object detection rate.Finally, drawing our inspiration from methods used for 2D texture representation, we propose to model moving backgrounds using a frequency-based approach. More precisely, the model takes into account the spatial neighborhoods of pixels but also their temporal neighborhoods. We apply local Fourier transform on the obtained regions in order to extract spatiotemporal color patterns.We apply our methods on multiple videos, including river videos under DADEC project, image sequences from the DynTex video database, several synthetic videos andsome of our own made videos. We compare our object detection results with the existing methods for real and synthetic videos quantitatively as well as qualitatively

Page generated in 0.0569 seconds