Spelling suggestions: "subject:"modèle dde food"" "subject:"modèle dde ford""
1 |
Utilisation du contexte pour la détection et le suivi d'objets en vidéosurveillance / Using the context for objects detection and tracking in videosurveillanceRogez, Matthieu 09 June 2015 (has links)
Les caméras de surveillance sont de plus en plus fréquemment présentes dans notre environnement (villes, supermarchés, aéroports, entrepôts, etc.). Ces caméras sont utilisées, entre autres, afin de pouvoir détecter des comportements suspects (intrusion par exemple) ou de reconnaître une catégorie d'objets ou de personnes (détection de genre, détection de plaques d'immatriculation par exemple). D'autres applications concernent également l'établissement de statistiques de fréquentation ou de passage (comptage d'entrée/sortie de personnes ou de véhicules) ou bien le suivi d'un ou plusieurs objets se déplaçant dans le champ de vision de la caméra (trajectoires d'objets, analyse du comportement des clients dans un magasin). Compte tenu du nombre croissant de caméras et de la difficulté à réaliser ces traitements manuellement, un ensemble de méthodes d'analyse vidéo ont été développées ces dernières années afin de pouvoir automatiser ces tâches. Dans cette thèse, nous nous concentrons essentiellement sur les tâches de détection et de suivi des objets mobiles à partir d'une caméra fixe. Contrairement aux méthodes basées uniquement sur les images acquises par les caméras, notre approche consiste à intégrer un certain nombre d'informations contextuelles à l'observation afin de pouvoir mieux interpréter ces images. Ainsi, nous proposons de construire un modèle géométrique et géolocalisé de la scène et de la caméra. Ce modèle est construit directement à partir des études de prédéploiement des caméras et peut notamment utiliser les données OpenStreetMap afin d'établir les modèles 3d des bâtiments proches de la caméra. Nous avons complété ce modèle en intégrant la possibilité de prédire la position du Soleil tout au long de la journée et ainsi pouvoir calculer les ombres projetées des objets de la scène. Cette prédiction des ombres a été mise à profit afin d'améliorer la segmentation des piétons par modèle de fond en supprimant les ombres du masque de mouvement. Concernant le suivi des objets mobiles, nous utilisons le formalisme des automates finis afin de modéliser efficacement les états et évolutions possibles d'un objet. Ceci nous permet d'adapter le traitement de chaque objet selon son état. Nous gérons les occultations inter-objets à l'aide d'un mécanisme de suivi collectif (suivi en groupe) des objets le temps de l'occultation et de ré-identification de ceux-ci à la fin de l'occultation. Notre algorithme s'adapte à n'importe quel type d'objet se déplaçant au sol (piétons, véhicules, etc.) et s'intègre naturellement au modèle de scène développé. Nous avons également développé un ensemble de "rétro-actions" tirant parti de la connaissance des objets suivis afin d'améliorer les détections obtenues à partir d'un modèle de fond. En particulier, nous avons abordé le cas des objets stationnaires, souvent intégrés à tort dans le fond, et avons revisité la méthode de suppression des ombres du masque de mouvement en tirant parti de la connaissance des objets suivis. L'ensemble des solutions proposées a été implémenté dans le logiciel de l'entreprise Foxstream et est compatible avec la contrainte d'exécution en temps réel nécessaire en vidéosurveillance. / Video-surveillance cameras are increasingly used in our environment. They are indeed present almost everywhere in the cities, supermarkets, airports, warehouses, etc. These cameras are used, among other things, in order to detect suspect behavior (an intrusion for instance) or to recognize a specific category of object or person (gender detection, license plates detection). Other applications also exist to count and/or track people in order to analyze their behavior. Due to the increasing number of cameras and the difficulty to achieve these tasks manually, several video analysis methods have been developed in order to address them automatically. In this thesis, we mainly focus on the detection and tracking of moving objects from a fixed camera. Unlike methods based solely on images captured by cameras, our approach integrates contextual pieces of information in order better interpret these images. Thus we propose to build a geometric and geolocalized model of the scene and the camera. This model is built directly from the pre-deployment studies of the cameras and uses the OpenStreetMap geographical database to build 3d models of buildings near the camera. We added to this model the ability to predict the position of the sun throughout the day and the resulting shadows in the scene. By predicting the shadows, and deleting them from the foreground mask, our method is able to improve the segmentation of pedestrians. Regarding the tracking of multiple mobile objects, we use the formalism of finite state machines to effectively model the states and possible transitions that an object is allowed to take. This allows us to tailor the processing of each object according to its state. We manage the inter-object occlusion using a collective tracking strategy. When taking part in an occlusion, objects are regrouped and tracked collectively. At the end of the occlusion, each object is re-identified and individual tracking resume. Our algorithm adapts to any type of ground-moving object (pedestrians, vehicles, etc.) and seamlessly integrates in the developed scene model. We have also developed several retro-actions taking advantage of the knowledge of tracked objects to improve the detections obtained with the background model. In particular, we tackle the issue of stationary objects often integrated erroneously in the background and we revisited the initial proposal regarding shadow removal. All proposed solutions have been implemented in the Foxstream products and are able to run in real-time.
|
2 |
Sur la définition et la reconnaissance des formes planes dans les images numériquesMusé, Pablo 01 October 2004 (has links) (PDF)
Cette thèse traite de la reconnaissance des formes dans les images numériques. Une représentation appropriée des formes est déduite de l'analyse des perturbations qui n'affectent pas la reconnaissance : changement de contraste, occlusion partielle, bruit, perspective. Les atomes de cette représentation, appelés "éléments de forme", fournissent des descriptions semi-locales des formes. L'appariement de ces éléments permet de reconnaitre des formes partielles. Les formes globales sont alors définies comme des groupes de formes partielles présentant une cohérence dans leur disposition spatiale. L'aspect fondamental de ce travail est la mise en place de seuils non-supervisés, à tous les niveaux de décision du processus de reconnaissance. Nous proposons des règles de décision pour la en correcpondance de formes partielles ainsi que pour la détection de formes globales. Le cadre proposé est basé sur une méthodologie générale de la détection dans laquelle un événement est significatif s'il n'est pas susceptible d'arriver par hasard.
|
3 |
Object Detection in Dynamic Background / Détection d’objets dans un fond dynamiqueAli, Imtiaz 05 March 2012 (has links)
La détection et la reconnaissance d’objets dans des vidéos numériques est l’un des principaux challenges dans de nombreuses applications de vidéo surveillance. Dans le cadre de cette thèse, nous nous sommes attaqué au problème difficile de la segmentation d’objets dans des vidéos dont le fond est en mouvement permanent. Il s’agit de situations qui se produisent par exemple lorsque l’on filme des cours d’eau, ou le ciel,ou encore une scène contenant de la fumée, de la pluie, etc. Il s’agit d’un sujet assez peu étudié dans la littérature car très souvent les scènes traitées sont plutôt statiques et seules quelques parties bougent, telles que les feuillages par exemple, ou les seuls mouvements sont des changements de luminosité. La principale difficulté dans le cadre des scènes dont le fond est en mouvement est de différencier le mouvement de l’objet du mouvement du fond qui peuvent parfois être très similaires. En effet, par exemple, un objet dans une rivière peut se déplacer à la même allure que l’eau. Les algorithmes de la littérature extrayant des champs de déplacement échouent alors et ceux basés sur des modélisations de fond génèrent de très nombreuses erreurs. C’est donc dans ce cadre compliqué que nous avons tenté d’apporter des solutions.La segmentation d’objets pouvant se baser sur différents critères : couleur, texture,forme, mouvement, nous avons proposé différentes méthodes prenant en compte un ou plusieurs de ces critères.Dans un premier temps, nous avons travaillé dans un contexte bien précis qui était celui de la détection des bois morts dans des rivières. Ce problème nous a été apporté par des géographes avec qui nous avons collaboré dans le cadre du projet DADEC (Détection Automatique de Débris pour l’Aide à l’Etude des Crues). Dans ce cadre, nous avons proposé deux méthodes l’une dite " naïve " basée sur la couleur des objets à détecter et sur leur mouvement et l’autre, basée sur une approche probabiliste mettant en oeuvre une modélisation de la couleur de l’objet et également basée sur leur déplacement. Nous avons proposé une méthode pour le comptage des bois morts en utilisant les résultats des segmentations.Dans un deuxième temps, supposant la connaissance a priori du mouvement des objets,dans un contexte quelconque, nous avons proposé un modèle de mouvement de l’objet et avons montré que la prise en compte de cet a priori de mouvement permettait d’améliorer nettement les résultats des segmentations obtenus par les principaux algorithmes de modélisation de fond que l’on trouve dans la littérature.Enfin, dans un troisième temps, en s’inspirant de méthodes utilisées pour caractériser des textures 2D, nous avons proposé un modèle de fond basé sur une approche fréquentielle.Plus précisément, le modèle prend en compte non seulement le voisinage spatial d’un pixel mais également le voisinage temporel de ce dernier. Nous avons appliqué la transformée de Fourier locale au voisinage spatiotemporel d’un pixel pour construire un modèle de fond.Nous avons appliqué nos méthodes sur plusieurs vidéos, notamment les vidéos du projet DADEC, les vidéos de la base DynTex, des vidéos synthétiques et des vidéos que nous avons faites. / Moving object detection is one of the main challenges in many video monitoring applications.In this thesis, we address the difficult problem that consists in object segmentation when background moves permanently. Such situations occur when the background contains water flow, smoke or flames, snowfall, rainfall etc. Object detection in moving background was not studied much in the literature so far. Video backgrounds studied in the literature are often composed of static scenes or only contain a small portion of moving regions (for example, fluttering leaves or brightness changes). The main difficulty when we study such situations is to differentiate the objects movements and the background movements that may be almost similar. For example, an object in river moves at the same speed as water. Therefore, motion-based techniques of the literature, relying on displacements vectors in the scene, may fail to discriminate objects from the background, thus generating a lot of false detections. In this complex context, we propose some solutions for object detection.Object segmentation can be based on different criteria including color, texture, shape and motion. We propose various methods taking into account one or more of these criteria.We first work on the specific context of wood detection in rivers. It is a part of DADEC project (Détection Automatique de Débris pour l’Aide à l’Etude des Crues) in collaboration with geographers. We propose two approaches for wood detection: a naïve method and the probabilistic image model. The naïve approach is based on binary decisions based on object color and motion, whereas the probabilistic image model uses wood intensity distribution with pixel motion. Such detection methods are used fortracking and counting pieces of wood in rivers.Secondly, we consider a context in which we suppose a priori knowledge about objectmotion is available. Hence, we propose to model and incorporate this knowledge into the detection process. We show that combining this prior motion knowledge with classical background model improves object detection rate.Finally, drawing our inspiration from methods used for 2D texture representation, we propose to model moving backgrounds using a frequency-based approach. More precisely, the model takes into account the spatial neighborhoods of pixels but also their temporal neighborhoods. We apply local Fourier transform on the obtained regions in order to extract spatiotemporal color patterns.We apply our methods on multiple videos, including river videos under DADEC project, image sequences from the DynTex video database, several synthetic videos andsome of our own made videos. We compare our object detection results with the existing methods for real and synthetic videos quantitatively as well as qualitatively
|
4 |
Détection des événements rares dans des vidéos / Detecting rare events in video sequencesPop, Ionel 23 September 2010 (has links)
Le travail présenté dans cette étude se place dans le contexte de l’analyse automatique des vidéos. A cause du nombre croissant des données vidéo, il est souvent difficile, voire impossible qu’un ou plusieurs opérateurs puissent les regarder toutes. Une demande récurrente est d’identifier les moments dans la vidéo quand il y a quelque chose d’inhabituel qui se passe, c’est-à-dire la détection des événements anormaux.Nous proposons donc plusieurs algorithmes permettant d’identifier des événements inhabituels, en faisant l’hypothèse que ces événements ont une faible probabilité. Nous abordons plusieurs types d’événements, de l’analyse des zones en mouvement à l’analyse des trajectoires des objets suivis.Après avoir dédié une partie de la thèse à la construction d’un système de suivi,nous proposons plusieurs mesures de similarité entre des trajectoires. Ces mesures, basées sur DTW (Dynamic Time Warping), estiment la similarité des trajectoires prenant en compte différents aspects : spatial, mais aussi temporel, pour pouvoir - par exemple - faire la différence entre des trajectoires qui ne sont pas parcourues de la même façon (en termes de vitesse de déplacement). Ensuite, nous construisons des modèles de trajectoires, permettant de représenter les comportements habituels des objets pour pouvoir ensuite détecter ceux qui s’éloignent de la normale.Pour pallier les défauts de suivi qui apparaissent dans la pratique, nous analysons les vecteurs de flot optique et nous construisons une carte de mouvement. Cette carte modélise sous la forme d’un codebook les directions privilégiées qui apparaissent pour chaque pixel, permettant ainsi d’identifier tout déplacement anormal, sans avoir pour autant la notion d’objet suivi. En utilisant la cohérence temporelle, nous pouvons améliorer encore plus le taux de détection, affecté par les erreurs d’estimation de flot optique. Dans un deuxième temps, nous changeons la méthode de constructions de cette carte de mouvements, pour pouvoir extraire des caractéristiques de plus haut niveau — l’équivalent des trajectoires, mais toujours sans nécessiter le suivi des objets. Nous pouvons ainsi réutiliser partiellement l’analyse des trajectoires pour détecter des événements rares.Tous les aspects présentés dans cette thèse ont été implémentés et nous avons construit certaines applications, comme la prédiction des déplacements des objets ou la mémorisation et la recherche des objets suivis. / The growing number of video data makes often difficult, even impossible, any attemptof watching them entirely. In the context of automatic analysis of videos, a recurring request is to identify moments in the video when something unusual happens.We propose several algorithms to identify unusual events, making the hypothesis that these events have a low probability. We address several types of events, from those generates by moving areas to the trajectories of objects tracked. In the first part of the study, we build a simple tracking system. We propose several measures of similarity between trajectories. These measures give an estimate of the similarity of trajectories by taking into account both spatial and/or temporal aspects. It is possible to differentiate between objects moving on the same path, but with different speeds. Based on these measures, we build models of trajectories representing the common behavior of objects, so that we can identify those that are abnormal.We noticed that the tracking yields bad results, especially in crowd situations. Therefore, we use the optical flow vectors to build a movement model based on a codebook. This model stores the preferred movement directions for each pixel. It is possible to identify abnormal movement at pixel-level, without having to use a tracker. By using temporal coherence, we can further improve the detection rate, affected by errors of estimation of optic flow. In a second step, we change the method of construction of this model. With the new approach, we can extract higher-level features — the equivalent trajectories, but still without the notion of object tracking. In this situation, we can reuse partial trajectory analysis to detect rare events.All aspects presented in this study have been implemented. In addition, we have design some applications, like predicting the trajectories of visible objects or storing and retrieving tracked objects in a database.
|
Page generated in 0.0541 seconds