• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 31
  • 15
  • 14
  • 13
  • 13
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SYNTHESIS OF CONJUGATED SMALL MOLECULES AND POLYMERS BY A PALLADIUM CATALYZED CYCLOPENTANNULATION STRATEGY – TOWARDS NEW ORGANIC SEMICONDUCTORS

Bheemireddy, Sambasiva Reddy 01 May 2017 (has links)
The utility of conjugated small molecules and polymers as organic semiconductors have seen a tremendous growth in research and development in academia as well as industry because of their processability and flexibility advantages in comparison to inorganic semiconductors. The extensive research over the years has produced a large number of p-type (hole conducting) and n-type (electron conducting) semiconductors that can be used to construct organic electronic devices. Of these materials, p-type semiconductors are more established and extensively studied because of the ease of preparation as well as their better general stability in comparison to n-type materials. Despite recent research into the development of n-type materials, fullerene (C60 and C70) and its derivatives are still the predominant materials used as electron acceptors for OPV applications. By taking advantage of the electron accepting behavior of cyclopenta[hi]aceanthrylene fragment of C70, we have designed and synthesized new materials based on cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs). By using a newly developed palladium catalyzed cyclopentannulation methodology, 1,2,6,7- tetraarylcyclopenta[hi]aceanthrylenes were prepared by treating diarylethynylenes with 9,10-dibromoanthracene. Scholl cyclodehydrogenation was used to close the externally fused aryl groups to provide access to contorted 2,7,13,18- tetraalkoxytetrabenzo[f,h,r,t]rubicenes. The contortion provides access to more soluble materials than their planar counterparts but still ii allows significant pi-pi stacking between molecules. Using a modified palladium catalyzed cyclopentannulation polymerization followed by a cyclodehydrogenation reaction, a nonconventional synthesis of CP-PAH embedded ladder polymers was also achieved. These ladder polymers possess broad UV-Vis absorptions and narrow optical gaps of 1.17-1.29 eV. The synthesis of new donor-acceptor copolymers incorporating electron accepting 1,2,6,7- tetra(4-dodecylphenyl)dicyclopenta[cd,jk]pyrene was also achieved. The donor unit was varied between thiophene, bithiophene, and 1,4-diethynyl-2,5-bis((2-octyldodecyl)oxy)-benzene producing polymers with high molecular weights and considerably low band gaps. This newly developed cyclopentannulation method was also used to synthesize a new class of stabilized pentacene derivatives with externally fused five-membered rings. The target compounds were synthesized via chemical manipulation of a partially saturated 6,13-dibromopentacene precursor that can be fully aromatized in a final step via a DDQ mediated dehydrogenation reaction. Photodegradation studies reveal the new 1,2,8,9-tetraphenyldicyclopenta[fg,qr]pentacene derivatives are more photostable than TIPS-pentacene, and possess narrow optical gaps of ~1.2 eV. Because anthradithophene (ADT) is more stable than pentacene while maintaining good electronic properties, the synthesis of cyclopentannulated anthradithiophenes (CP-ADTs) was also explored. Synthesis of a highly contorted ADT analogue was achieved by treating 5,11-dibromo-anthradithiophene with 3,3’-dimethoxy,1,1’-diphenyl acetylene under palladium catalyzed cyclopentannulation conditions followed by Scholl cyclodehydrogenation.
2

Connective-Pummerer cyclisations and SmI2-mediated cascade reactions for the synthesis of nitrogen-containing heteroacenes

Levick, Matthew Thomas January 2013 (has links)
This thesis describes work towards a range of novel nitrogen containing polyaromatic heterocycles for use as organic semiconductors. A route to benzo[b]carbazole end-capped oligothiophenes has been developed; relying on two key steps; namely a connective-Pummerer cyclisation and a SmI2-mediated cleavage–cyclisation cascade. A route to extended dibenzoindolo[3,2-b]carbazole-based aza-heptacenes has also been developed, by employing the same key steps in a two-directional manner. The physical and electronic properties of the resulting materials has been assessed, and the utility of the materials in OFET devices has been demonstrated.
3

Understanding Doped Organic Field-Effect Transistors

Liu, Shiyi 26 November 2019 (has links)
No description available.
4

Organic Molecules for Field Effect Transistors and Redox Flow Batteries

Li, Xiang January 2020 (has links)
No description available.
5

Enhancing fluorescence and charge transport in disordered organic semiconductors

Thomas, Tudor Huw January 2018 (has links)
High performance optoelectronic applications require simultaneously high mobility ($\mu$) and high quantum efficiency of fluorescence ($\Phi$). While this has been realised for organic small molecule semiconductors, applications such as high efficiency organic photovoltaics and bright organic light-emitting diodes towards electrically driven lasing are hampered by an apparent trade-off between $\mu$ and $\Phi$ in disordered systems. Recent reports of state-of-the-art device performance often optimise $\mu$ and $\Phi$ in disordered organic materials separately, and employ multi-layer architectures. In this work, we investigate materials in a class of donor-acceptor polymer materials; the indacenodithiophene-$\textit{alt}$-benzothiadiazole family, which demonstrate high $\mu$ in spite of a low long-range structural order, to understand the interplay between these two important device figures-of-merit. In the first section, we evaluate the effect of various tuneable parameters on $\mu$ and device performance in organic field-effect transistors. Using chemical modifications to the solubilising side chains, we observe that the substitution of bulky groups leads to a reduction of the hole mobility $\mu_h$ > 2 cm$^{2}$/Vs to ~ 0.5 cm$^{2}$/Vs in the benchmark polymer of this family, indacenodithiophene-$\textit{alt}$-benzothiadiazole. Crystallographic and exciton-quenching based experiments confirm this observation is closely related to the degree of polymer backbone aggregation, and this leads to a different temperature evolution of the transport behaviour. In order to reliably improve $\mu$ in these systems, an elongation of the donor subunit is required. This increases the $\pi$-electron density on the donor, and can lead to an improvement in $\mu$ where the side chain density is decreasing. This chemical design, leading to a more highly aggregated structural motif is much more potent in determining $\mu$, it seems, than design strategies to further improve the energetic disorder in the joint density of states and the potential barrier to torsion, which may be near optimised in these low-disorder systems. In the second section, we unpick the precise relationship between the degree of aggregation apparently linking high $\mu$ to low $\Phi$. With a prototype system, we compare the photophysics of two indacenodithiophene-$\textit{alt}$-benzothiadiazole polymers differing by side chain bulkiness. Despite the aforementioned suppression of $\mu$, we observe an improvement to $\Phi$ of $< 0.02$ to $\sim 0.18$ upon backbone separation. This derivative has the highest $\Phi$ reported for any polymer with $\mu$ exceeding that of amorphous-Si. However, the $\Phi$ in the more aggregated derivative is not limited by the formation of non-emissive excitons, but rather by an additional internal conversion pathway which is strongly temperature dependent, and mediated by Raman-active vibrations and close chain coupling. Extending this study, we analyse additional materials in this family with the highest $\Phi \cdot \mu$ values reported for conjugated polymers. We find that increasing the energy gap leads to an increase in $\Phi$, and secondary emission pathways via weakly luminescent inter-chain charge transfer species. By solving the rate equations for exciton recombination, we use the radiative rate of inter-chain luminescence as a probe to show strong wavefunction mixing at close-contact points for some polymers, and suggest this as the origin for a superior $\mu$ in dithiopheneindenofluorene-$\textit{alt}$-benzothiadiazole compared to indacenodithiophene-$\textit{alt}$-benzothiadiazole. We demonstrate how low $\mu$ can be decoupled from the energy gap ($E_g$), and propose backbone elongation leading to increased inter-chain wavefunction overlap and a higher $E_g$ as a design rule to increase $\Phi$ and $\mu$ together. Finally, we assess the role of low-frequency vibrations in organic semiconductors displaying thermally activated delayed fluorescence (TADF). In the low-aggregation limit where $\Phi$ is maximised, we show that non-radiative triplet recombination is strongly related to low frequency torsional motion, and both are reduced in the presence of a rigid polymer host matrix for various TADF materials across different classes. However, we also explore the importance of rotational freedom in determining the oscillator strength, exchange energy, and spin-orbit coupling matrix elements which mediate luminescence in the absence of a rigid host. We demonstrate that suppressing dynamic motion is a powerful tool to modulate the photophysical properties of these emitters, and can lead to improved $\Phi$ particularly for low $E_g$ emitters.
6

SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED NAPHTHALENES AND ANTHRACENES

Zhang, Guang 01 January 2012 (has links)
Organic electronics have received significant development in the last few decades. p- Type materials are much more in availability than n-type now. There are only a few examples of air-stable n-type materials. The design and synthesis of novel air-stable ntype materials is still a focus of research. Herein is described a study to evaluate the effectiveness of a novel electron-withdrawing group, composed of three electronwithdrawing groups connected in series, to impart material properties known to be favorable for obtaining air-stable n-types. The smaller acenes, naphthalene and anthracene, carrying these electron-withdrawing groups were prepared and studied by UV-Vis absorption spectroscopy and solution electrochemical measurements to estimate changes in frontier molecular orbital energies and single crystal X-ray diffraction to determine packing motif. These measurements suggest that the new materials could be promising as n-type semiconductors in organic field effect transistor (OFET) and as acceptors for organic photovoltaic (OPV) cells. The reasons are based on: (1) the close intermolecular contacts seen in X-ray crystal structures, some of them showing 3D faceto- face stack. (2) Electrochemical measurements indicate LUMO energy levels suitable for air-stable n-type materials.
7

Conception, synthèse et caractérisation de semi-conducteurs moléculaires à dimensionnalité élevée

Richard, Audrey 25 August 2017 (has links) (PDF)
L’organique électronique, qui repose sur l’utilisation de molécules et macromolécules fi-conjuguées comme semi-conducteurs dans divers dispositifs électroniques, connaît un essor considérable depuis une vingtaine d’années. L’utilisation de molécules organiques octroie de nombreux avantages vis-à-vis du silicium actuellement largement utilisé comme semi-conducteur. Citons par exemple la facilité de mise en oeuvre et la flexibilité méca- nique. La synthèse de nouvelles structures moléculaires est un axe important pour la mise au point de semi-conducteurs organiques plus performants mais aussi pour fournir les systèmes physiques nécessaires à la compréhension des processus physico-chimiques inhérents au transport de charges. Le paramètre primordial pour déterminer la qualité des semi-conducteurs est la mobilité des charges (μ), soit l’efficacité avec laquelle les charges se déplacent au sein des matériaux pi-conjugués. Il n’est pas impossible, qu’un jour, les performances des semi-conducteurs organiques dépassent celles du silicium en raison de la grande diversité de structures moléculaires accessibles via la synthèse organique. Le contrôle de la dimensionnalité de la structure électronique dans les solides organiques moléculaires est crucial pour le développement des dispositifs électroniques organiques à hautes performances. La dimensionnalité correspond au nombre de dimensions de l’espace (1D, 2D, 3D) dans lesquelles les charges peuvent se déplacer, plus celle-ci sera faible, plus le transport de charges sera sensible aux défauts. Dans ce contexte, nous nous sommes basés sur l’étude menée par Schweicher et al. sur le 2,7-di-tert-butyl[1]benzothiéno[3,2- b]benzothiophène, présentant une dimensionnalité des propriétés du transport de charges proche de deux. Ce travail repose sur la synthèse et la caractérisation de semi-conducteurs moléculaires sur base du [1]benzothiéno[3,2-b]benzothiophène (BTBT) dans le but d’augmenter la dimensionnalité du transport de charges. Pour ce faire, différents groupements aromatiques mais également plusieurs substituants dont le tert-butyle ont été greffés au BTBT. Ce travail a permis de voir que la relation structure-propriétés est difficilement prédictible mais il s’avère que la présence des groupements tert-butyles permet d’augmenter la dimensionnalité dans la plupart des cas. Cependant, lorsque des groupements 2-méthylnonyles sont utilisés à la place des tert-butyles, la structure cristalline des semi-conducteurs présentent généralement du désordre structural, néfaste aux propriétés du transport de charges. Du polymorphisme a aussi été décelé pour quelques semi-conducteurs munis de chaînes octyles. En plus de différents substituants, des groupements aromatiques ont été greffés au BTBT tels que des phényles, des thiényles, des bithiényles et également une unité BTBT pour former le dimère. Contre toute attente, l’allongement du système pi n’a pas conduit à la diminution du potentiel d’ionisation. Néanmoins, l’ajout de longues chaînes alkyles induit le rapprochement spatial des systèmes conjugués au sein de la maille cristalline, octroyant aux semi-conducteurs un potentiel d’ionisation plus faible ainsi que des intégrales de transport plus élevées, propices au transport de charges. Ce travail a permis également de faire une étude préliminaire du transport de charges au sein de monocristaux sur trois semi-conducteurs dont deux nouvellement synthétisés. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
8

Elektrické transportní vlastnosti materiálů pro organickou elektroniku / Electrical transport properties of materials for organic electronics

Stříteský, Stanislav January 2012 (has links)
My master thesis is focused on design and realization fully automated system which will be used for the characterization of the organic FET structure, based on DPP derivatives with follow optimization of the characterization process. Program „MeasFET“ has been created at the LabVIEW surroundings that drives hardware gadgets was build-up during last year. Furthermore, initial tests were taken for optimalization process of charge carrier mobility measurements in derivatives DPP.
9

Wet Organic Field Effect Transistor as DNA sensor

Chiu, Yu-Jui January 2008 (has links)
Label-free detection of DNA has been successfully demonstrated on field effect transistor (FET) based devices. Since conducting organic materials was discovered and have attracted more and more research efforts by their profound advantages, this work will focus on utilizing an organic field effect transistor (OFET) as DNA sensor. An OFET constructed with a transporting fluidic channel, WetOFET, forms a fluid-polymer (active layer) interface where the probe DNA can be introduced. DNA hybridization and non-hybridization after injecting target DNA and non-target DNA were monitored by transistor characteristics. The Hysteresis area of transfer curve increased after DNA hybridization which may be caused by the increasing electrostatic screening induced by the increasing negative charge from target DNA. The different morphology of coating surface could also influence the OFET response.
10

Wet Organic Field Effect Transistor as DNA sensor

Chiu, Yu-Jui January 2008 (has links)
<p>Label-free detection of DNA has been successfully demonstrated on field effect transistor (FET) based devices. Since conducting organic materials was discovered and have attracted more and more research efforts by their profound advantages, this work will focus on utilizing an organic field effect transistor (OFET) as DNA sensor.</p><p>An OFET constructed with a transporting fluidic channel, WetOFET, forms a fluid-polymer (active layer) interface where the probe DNA can be introduced. DNA hybridization and non-hybridization after injecting target DNA and non-target DNA were monitored by transistor characteristics. The Hysteresis area of transfer curve increased after DNA hybridization which may be caused by the increasing electrostatic screening induced by the increasing negative charge from target DNA. The different morphology of coating surface could also influence the OFET response.</p>

Page generated in 0.0315 seconds