• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulating, fabricating and characterising photoconductive microwave switches for RF applications

Kowalczuk, Emma K. January 2014 (has links)
Photoconductive microwave switches can be used in place of traditional microwave switches to reconfigure antennas and RF circuits. The switch, which consists of a silicon die placed over a gap in transmission line, is controlled by illumination via a fibre optic cable. Hence there is no requirement to design electrical biasing lines which may affect RF performance. This benefit is the main motivation behind further developing and understanding the photoconductive switch. The second motivation is the growing demand for reconfigurable antennas which necessitate certain switching requirements; one specific area of interest is in cognitive radio applications. However, in order to use such a switch in RF circuitry, the photoconductive nature of the switch must be understood. This is addressed in this thesis presenting and applying analytical equations which dictate the material properties in photoconductive silicon. These equations are then used to generate a 3D EM simulation model to investigate transmission loss in the photoconductive switch. The concept of signal planarity is investigated so as to give some insight into the best way to package the switch. In order to potentially reduce loss and facilitate a packaged device, the fabrication of the switch is investigated. Namely, the treatment of the silicon and the addition of contacts on the silicon are discussed as possible methods to improve switch performance. Lastly, linearity, power handing and switching times are presented for the photoconductive switch. This characterisation is important with regards to understanding which types of application the switch can be used in. In particular the single tone and two tone linearity of the switch is measured these values have not previously been reported for this type of photoconductive switch. The results are encouraging and support further development of the switch into a packaged product to be used in reconfigurable antennas and circuitry.
2

Optical Control of Magnetic Feshbach Resonances by Closed-Channel Electromagnetically Induced Transparency

Jagannathan, Arunkumar January 2016 (has links)
<p>Optical control of interactions in ultracold gases opens new fields of research by creating ``designer" interactions with high spatial and temporal resolution. However, previous optical methods using single optical fields generally suffer from atom loss due to spontaneous scattering. This thesis reports new optical methods, employing two optical fields to control interactions in ultracold gases, while suppressing spontaneous scattering by quantum interference. In this dissertation, I will discuss the experimental demonstration of two optical field methods to control narrow and broad magnetic Feshbach resonances in an ultracold gas of $^6$Li atoms. The narrow Feshbach resonance is shifted by $30$ times its width and atom loss suppressed by destructive quantum interference. Near the broad Feshbach resonance, the spontaneous lifetime of the atoms is increased from $0.5$ ms for single field methods to $400$ ms using our two optical field method. Furthermore, I report on a new theoretical model, the continuum-dressed state model, that calculates the optically induced scattering phase shift for both the broad and narrow Feshbach resonances by treating them in a unified manner. The continuum-dressed state model fits the experimental data both in shape and magnitude using only one free parameter. Using the continuum-dressed state model, I illustrate the advantages of our two optical field method over single-field optical methods.</p> / Dissertation
3

[en] THEORETICAL AND EXPERIMENTAL STUDY ON MICROWAVE HEMTS / [pt] ESTUDO TEÓRICO E EXPERIMENTAL SOBRE HEMTS DE MICROONDAS

MURILO ARAUJO ROMERO 16 January 2007 (has links)
[pt] Neste trabalho é realizado um estudo sobre os transistores HEMT. A partir da geometria do dispositivo, espessuras e densidades de dopagem das camadas que compõem a heterojunção, são obtidas expressões analíticas para a característica IXV do componente bem como para o circuito equivalente de pequenos sinais na faixa de microondas. Posteriormente, os principais efeitos ópticos que ocorrem nos HETM´s são discutidos. O objetivo é determinar o comportamento do dispositivo quando este é iluminado com energia óptica. Ênfase especial é dada aos efeitos fotocondutivo e fotovoltaico. Finalmente, duas aplicações práticas explorando os mecanismos citados acima são apresentadas: sintonia óptica de um oscilador de microondas operando em 2 Ghz e controle óptico do ganho de um amplificador de microondas. / [en] In this work a study about HETMs transistors is carried out. Given the geometry of the device, thickness and doping densities of the layers that form the heterojunction, analytical expressions for the component´s IXV characteristics as well as for the small-signal microwave equivalent circuit are obtained. Later, the major photoffects that occur in HETM´s are discussed. The goal is to determine the behaviour of the device under optical illumination. Special emphasis is given for the photovoltaic and photoconductive effects. Finally, two pratical applications exploring the mechanisms cited above are presented: optical tuning of a 2 Ghz HETM oscillator and optical control of gain of a microwave HEMT amplifier.
4

Optical control of polariton condensation and dipolaritons in coupled quantum wells

Cristofolini, Peter January 2015 (has links)
Polaritons are lightweight bosonic quasiparticles that result from the strong coupling of light with an exciton transition inside a microcavity. A sufficiently dense cloud of polaritons condenses into a polariton condensate, a state of matter showing macroscopic coherence and superfluid properties, whose dynamics are influenced by the cycle of constant pumping and decay of polaritons. This thesis begins with an introduction on the particle and wave properties of the polariton condensate, followed by a theoretical description of two-dimensional Bose-Einstein condensation (BEC) and a section on simulation of polariton condensates. The optical setup and the microcavity sample are presented thereafter, including holographic laser shaping with a spatial light modulator (SLM), which allows exciting the microcavity with arbitrarily shaped pump geometries. Experimental results comprise optical control of polariton condensates, and dipolaritons. First, optical blueshift trapping and energy synchronisation (phase locking) of condensates are introduced. The transition from phase-locked condensates to an optically trapped condensate is investigated for a configuration of N pump spots arranged on a circle of varying diameter. Differences between these two condensate types are highlighted in the discussion section. Next, two parallel pump laser lines with small separation are investigated, which create a one-dimensional waveguide with strong uniform gain. Optically guided polaritons are investigated in this configuration with respect to coherence, flow speed, temperature and chemical potential. Observations hint that coherence arises below the condensation threshold simply from the chosen geometry of the system. The final chapter is dedicated to dipolaritons (polaritons with a static dipole moment) which form when polaritons strongly couple to indirect excitons in coupled quantum wells. In this system quantum tunnelling of electrons can be controlled with bias voltage. This allows tuning the dipolariton properties optically and electrically, with exciting prospects for future experiments. A conclusion and outlook section rounds off this work.
5

Optická kontrola skleněného polotovaru / Visual inspection of transparent products

Matus, Gabriel January 2014 (has links)
This project deals with the optical control of welding glass blank. The blank consists two small parts of made of special glass. This blank is an essential part of the measuring device density of oxygen. Measuring device algorithm is based on paramagnetic properties of oxygen. It is a small and precise piece of the whole mechanism therefore the precision and perfection made strict criteria. For checking compliance with those criteria, developed a computer program written in C# programming language. Its task is to rule on perfection produced parts. It also serves to back up data on individual production units.
6

Optimal Control Protocols for Quantum Memory Network Applications

Takou, Evangelia 25 June 2024 (has links)
Quantum networks play an indispensable role in quantum information tasks such as secure communications, enhanced quantum sensing, and distributed computing. In recent years several platforms are being developed for such tasks, witnessing breakthrough technological advancement in terms of fabrication techniques, precise control methods, and information transfer. Among the most mature and promising platforms are color centers in solids. These systems provide an optically active electronic spin and long-lived nuclear spins for information storage. The first part of this dissertation is concerned with error mechanisms in the control of electronic and nuclear spins. First, I will focus on control protocols for improved electron-spin rotations tailored to specific color centers in diamond. I will then discuss how to manipulate the entanglement between the electron and the always-coupled nuclear spin register. I will describe a general formalism to quantify and control the generation of en- tanglement in an arbitrarily large nuclear spin register. This formalism incorporates exactly the dynamics with unwanted nuclei, and quantifies the performance of entangling gates in the presence of unwanted residual entanglement links. Using experimental parameters from a well-characterized multinuclear spin register, I will show that preparation of multipartite entanglement in a single-shot is possible, which drastically reduces the total gate time of conventional protocols. Then, I will present a new formalism for describing all-way entanglement and show how to design gates that prepare GHZM states. I will show how to incorporate errors such as unwanted correlations, electronic dephasing errors or pulse control errors. The second part of this thesis focuses on the preparation of all-photonic graph states from a few quantum emitters. I will introduce heuristic algorithms that exploit graph theory concepts in order to reduce the entangling gate counts, and also discuss the role of locally equivalent graphs in the optimization of the generation circuits. / Doctor of Philosophy / Quantum information science emerged by combining ideas and principles of information theory, nanoscale engineering, photonics, atomic and solid-state physics in a unified effort to realize and fabricate efficient quantum-based architectures. Spin-based solid-state quantum computers are one of the leading candidates for quantum architectures. For these types of devices, the quantum bit of information can be encoded in the spin states of electron/nuclear memories, while the logical operations are performed by driving transitions between a multi- level spin structure. In this thesis, I will describe the role of color centers for quantum computations and networking. I will explain the error sources and dynamics of SiV− and SnV− color centers in diamond and show how to drive with high fidelity optical rotations of their spin states. Additionally, I will explain how periodic driving of the electronic spin can serve as a method to control the nuclear spin memories and show how to precisely prepare multipartite entangled states within an arbitrarily large electron-nuclear spin register. Lastly, I will focus on the preparation of all-photonic graph states and show how to prepare them with optimal resources.
7

Controlling Semiconductor Optical Amplifiers for Robust Integrated Photonic Signal Processing

Kuntze, Scott Beland 16 July 2009 (has links)
How can we evaluate and design integrated photonic circuit performance systematically? Can active photonic circuits be controlled for optimized performance? This work uses control theory to analyze, design, and optimize photonic integrated circuits based on versatile semiconductor optical amplifiers (SOAs). Control theory provides a mathematically robust set of tools for system analysis, design, and control. Although control theory is a rich and well-developed field, its application to the analysis and design of photonic circuits is not widespread. Following control theoretic methods already used for fibreline systems we derive three interrelated state-space models: a core photonic model, a photonic model with gain compression, and a equivalent circuit optoelectronic model. We validate each model and calibrate the gain compression model by pump/probe experiments. We then linearize the state-space models to design and analyze SOA controllers. We apply each linearized model to proof-of-concept SOA control applications such as suppressing interchannel crosstalk and regulating output power. We demonstrate the power of linearized state-space models in controller design and stability analysis. To illustrate the importance of using the complete equivalent circuit model in controller design, we demonstrate an intuitive bias-current controller that fails due to the dynamics of the intervening parasitic circuitry of the SOA. We use the linearized state-space models to map a relationship between feedback delay and controller strength for stable operation, and demonstrate that SOAs pose unusual control difficulties due to their ultrafast dynamics. Finally, we leverage the linearized models to design a novel and successful hybrid controller that uses one SOA to control another via feedback (for reliability) and feedforward (for speed) control. The feedback controller takes full advantage of the equivalent circuit modelling by sampling the voltage of the controlled SOA and using the error to drive the bias current of the controller SOA. Filtering in the feedback path is specified by transfer function analysis. The feedforward design uses a novel application of the linearized models to set the controller bias points correctly. The modelling and design framework we develop is entirely general and opens the way to the robust optoelectronic control of integrated photonic circuits.
8

Controlling Semiconductor Optical Amplifiers for Robust Integrated Photonic Signal Processing

Kuntze, Scott Beland 16 July 2009 (has links)
How can we evaluate and design integrated photonic circuit performance systematically? Can active photonic circuits be controlled for optimized performance? This work uses control theory to analyze, design, and optimize photonic integrated circuits based on versatile semiconductor optical amplifiers (SOAs). Control theory provides a mathematically robust set of tools for system analysis, design, and control. Although control theory is a rich and well-developed field, its application to the analysis and design of photonic circuits is not widespread. Following control theoretic methods already used for fibreline systems we derive three interrelated state-space models: a core photonic model, a photonic model with gain compression, and a equivalent circuit optoelectronic model. We validate each model and calibrate the gain compression model by pump/probe experiments. We then linearize the state-space models to design and analyze SOA controllers. We apply each linearized model to proof-of-concept SOA control applications such as suppressing interchannel crosstalk and regulating output power. We demonstrate the power of linearized state-space models in controller design and stability analysis. To illustrate the importance of using the complete equivalent circuit model in controller design, we demonstrate an intuitive bias-current controller that fails due to the dynamics of the intervening parasitic circuitry of the SOA. We use the linearized state-space models to map a relationship between feedback delay and controller strength for stable operation, and demonstrate that SOAs pose unusual control difficulties due to their ultrafast dynamics. Finally, we leverage the linearized models to design a novel and successful hybrid controller that uses one SOA to control another via feedback (for reliability) and feedforward (for speed) control. The feedback controller takes full advantage of the equivalent circuit modelling by sampling the voltage of the controlled SOA and using the error to drive the bias current of the controller SOA. Filtering in the feedback path is specified by transfer function analysis. The feedforward design uses a novel application of the linearized models to set the controller bias points correctly. The modelling and design framework we develop is entirely general and opens the way to the robust optoelectronic control of integrated photonic circuits.
9

Dynamique et contrôle optique des molécules froides / Dynamic and optical control of cold molecules

Vexiau, Romain 10 December 2012 (has links)
Le travail théorique présenté dans cette thèse concerne la formation de molécules ultra-froides bialcalines et le contrôle de leurs degrés de liberté externes et internes. Cette étude est motivée par les nombreuses expériences en cours visant à l'obtention d'un gaz quantique dégénéré de molécules dans leur état fondamental absolu. Le schéma de formation étudié repose sur le processus de transfert adiabatique stimulé (STIRAP) réalisé en présence d'un potentiel optique de piégeage (réseau optique) des atomes et des molécules.Nous avons déterminé les paramètres du réseau optique (intensité et fréquence du champ laser) qui permettent de piéger efficacement des dimères d'alcalins en évaluant la polarisabilité dynamique acquise par les molécules soumises à un champ externe. Ces calculs reposent en particulier sur la connaissance détaillée de la structure électronique des molécules. Nous avons identifié des plages de longueur d'ondes dites « magiques » où la polarisabilité est la même pour chaque niveau peuplé au cours du transfert adiabatique, permettant ainsi un transfert optimal. Ce formalisme nous a également permis d'obtenir les coefficients Van der Waals de l'interaction à longue portée nécessaires pour étudier les taux de collisions entre molécules.Nous avons réalisé une étude plus détaillée de la molécule RbCs. En étudiant précisément la probabilité de transition de la molécule vers un niveau excité, nous avons proposé un schéma STIRAP pour transférer des molécules de RbCs, initialement dans un niveau vibrationnel excité, vers leur état rovibrationnel fondamental.Ces travaux ont montré l'importance de la connaissance précise de la structure hyperfine de l'état électronique moléculaire excité pour réaliser un gaz dégénéré de molécules dans un état quantique bien défini. Un modèle asymptotique nous a permis d'obtenir une première estimation de la structure hyperfine des courbes d'énergies potentielles des premiers états moléculaires excités des molécules Cs2 et RbCs. / The theoretical work presented in this thesis is focused on the formation of ultracold bialcaline molecules and on the control of their external and internal degrees of freedom. This study is motivated by the increasing number of experiments aiming at obtaining a quantum degenerate gas of molecules in their absolute ground state. The formation scheme we worked on is based on the Stimulated Raman Adiabatic Passage (STIRAP) technique operated while molecules are trapped inside an optical lattice.We have determined the parameters of the optical lattice (intensity and wavelength of the laser) that allow for an efficient trapping of the alkali dimers by evaluating the dynamic polarizability of molecules in the presence of an external field. Such calculations require the accurate knowledge of the electronic structure of the molecules. We have identified the so-called ``magic'' wavelength for which all levels populated during the STIRAP sequence have the same polarizability, thus ensuring an optimal transfer. The same approach has also been used to compute the strength of the long-range interaction between polar bialkali molecules needed to evaluate collision rates.The particular case of the RbCs molecule has been investigated. We have selected a radiative transition allowing for an efficient STIRAP scheme yielding molecules in their rovibrational ground state. These works have raised the need for the precise knowledge of the hyperfine structure of the excited electronic molecular state involved in the STIRAP scheme. We have developed an asymptotic model to obtain a first estimate of the hyperfine structure for the potential curves of the lowest excited states of Cs2 and RbCs.
10

Laser pulse control of dissipative dynamics in molecular systems

Mancal, Tomas 19 December 2002 (has links)
Diese Arbeit wird einer Weiterentwicklung der Dichtematrixtheorie und ihrer Anwendung zum Studium ultraschneller laserpulsinduzierter Dynamik in Molekularsystemen in Wechselwirkung mit einem thermischen Bad gewidmet. Zwei grosse Themenkomplexe werden behandelt. Zuerst werden die sogenannten Gedächtniseffekte diskutiert. Diese folgen aus einer reduzierten Beschreibung des Molekularsystems, in der die Umgebungsfreiheitsgrade eliminiert werden. Im zweiten Teil wird die Laserpulssteuerung der dissipativen Molekulardynamik untersucht. Die theoretische Beschreibung von offenen Quantensystemen führt zu einer zeitlich nicht-lokalen Bewegungsgleichung: Die Zeitentwicklung des Molekularsystems hängt von seiner Vergangenheit ab. In dieser Arbeit wird eine numerische Methode zur Lösung der zeitlich nicht-lokalen Bewegungsgleichung entwickelt und mit einem minimalen Modell eines polyatomaren Moleküls unter dissipativem Einfluss der Umgebung getestet. Eine analytische Lösung der Bewegungsgleichung für den speziellen Fall einer sehr langen Gedächtniszeit wurde hergeleitet. Zur Identifizierung solcher Gedächtniseffekte vergleichen wir diese analytische Lösung mit numerischen Rechnungen inklusive Gedächtnis und mit approximativen Rechnungen, die die zeitliche Nicht-Lokalität vernachlässigen. Für eine Anregung mit einem Laserpuls, der kürzer als die Gedächtniszeit des Systems ist, zeigt das Molekularsystem eine erkennbar unterschiedliche Dynamik als ohne Gedächtniss. Die Gedächtniseffekte werden mit abfallender Laserpulslänge deutlich ausgeprägter. Der zweite Teil der Arbeit konzentriert sich auf die Anwendung der Theorie der Optimalen Kontrolle, um die molekulare Dynamik zu steuern. Aus der Theorie der Optimalen Kontrolle erhält man Laserpulse, die bestimmte Aufgaben erfüllen, z.B. die Besetzung gewünschter vibronischer Niveaus des Molekularsystems oder die Platzierung eines Wellenpakets auf einer vorgegebenen Position auf der molekularen Potentialfläche. Als erstes Beispiel haben wir die Kontrolle des dissipativen fotoinduzierten Elektronentransfers in einem Donator-Brückenmolekül-Akzeptor System betrachtet, wobei wir das Gedächtniss vernachlässigt haben. Die Steuerbarkeit des Elektronentransfers wird diskutiert und der Mechanismus, mit dem sie möglich wird, wird identifiziert. Wir haben festgestellt, dass die Steuerung der Elektronentransferreaktionen selbst unter dem Einfluss von Dissipation möglich ist, obwohl die Kontrollausbeute mit steigender Dissipation drastisch abfällt. In Anwesenheit von Dissipation verändert sich auch der Mechanismus der Steuerung. Die experimentelle Ausführbarkeit der Herstellung des aus der Theorie der Optimalen Kontrolle resultierenden Kontrollpulses wird diskutiert und Methoden werden präsentiert, die die Abschätzung der Effizienz ermöglichen, mit der ein Flussigkristall--Laserpulsformer, wie er heute in Experimenten verwendet wird, den gewünschten Puls erzeugen kann. Um zwischen verschiedenen Kontrollaufgaben zu unterscheiden, wird ein quantitatives Mass eingeführt, das die Komplexität der Kontrollaufgabe charakterisiert. Die Theorie der Optimalen Kontrolle wird auch für Molekularsysteme formuliert, die statische Unordnung zeigen, und wird auf ein Ensemble von Molekülen mit zufälligen Orientierungen angewendet. Zum Schluss wird die Bedeutung der Gedächtnisseffekte für die Steuerung der dissipativen Dynamik diskutiert und die Theorie der Optimalen Kontrolle neu formuliert um eine zeitliche Nicht-Lokalität in der Bewegungsgleichung des Molekularsystems zu berücksichtigen. / This work is dedicated to a further development of the density matrix theory and its application to the study of ultrafast laser pulse induced dynamics in molecular systems interacting with a thermal environment. Two topics are considered, first the so-called memory effects are analyzed which result from a reduced description of the molecular system excluding the environmental degrees of freedom. And secondly, the laser pulse control of dissipative molecular dynamics is examined. The theoretical description of open quantum systems results in a time non-local equation of motion so that the evolution of the molecular system depends on its past. In this work a numerical method to solve the time non-local equations of motion has been developed and tested for a minimal model of a polyatomic molecule subject to the dissipative influence of an environment. An analytical solution of the equation of motion for the special case of very long standing memory is also achieved. To identify signatures of such memory effects in general case we compare this analytical solution with numerical calculations involving memory and with approximative computations ignoring time non-locality. For the excitation by a laser pulse shorter than the duration of the memory the molecular systems exhibit noticeably different dynamics than for the absence of the memory. The effects become significantly more pronounced with decreasing laser pulse durations. The second part of the work concentrates on the application of the optimal control theory to guide molecular dynamics. Optimal control theory provides laser pulses which are designed in such a manner to fulfill certain control tasks, e.g. the population of a desired vibrational level of the molecular system or the placement of a wavepacket on a prescribed position on the molecular potential energy surface. As a first example the control of the dissipative photo-induced electron transfer in a donor--bridge--acceptor systems has been particularly considered ignoring the memory. The controllability of the electron transfer has been discussed and the mechanism by which it becomes possible has been identified. We have found the control of electron transfer reactions feasible even under the influence of dissipation although the yield of the control decreases drastically with increasing dissipation. In the presence of dissipation mechanism of the control has been found to change. The feasibility of the reproduction of the control pulses resulting for the optimal control theory in the experiment has been discussed and methods have been presented how to check the efficiency of the reproduction of optimal control pulses by liquid crystal pulse shapers, prevailingly used in modern control experiments. To distinguish different control tasks a quantitative measure has been introduced characterizing complexity of the control task. The optimal control theory has also been formulated for molecular systems showing static disorder and applied on an ensemble of molecules exhibiting random orientations. Finally, the importance of memory effects for the control of dissipative dynamics has been discussed and the optimal control theory has been formulated to account for a time non-locality in the equation of motion for molecular systems.

Page generated in 0.3323 seconds