Spelling suggestions: "subject:"[een] PARTICLE SIZE"" "subject:"[enn] PARTICLE SIZE""
261 |
Preparation and characterisation of pheroid vesicles / Charlene Ethel UysUys, Charlene Ethel January 2006 (has links)
Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
|
262 |
Chemical and Physical Properties of Atmospheric Aerosols (a) A Case Study in the Unique Properties of Agricultural Aerosols (b) The Role of Chemical Composition in Ice Nucleation during the Arctic SpringMoon, Seong-Gi 2010 May 1900 (has links)
This study focuses on the analysis of atmospheric particles sampled from two different field campaigns: the field study at a cattle feeding facility in the summer from 2005 to 2008 and the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in 2008.
A ground site field study at a representative large cattle feeding facility in the Texas Panhandle was conducted to characterize the particle size distributions, hygroscopicity, and chemical composition of agricultural aerosols. Here, a first comprehensive dataset is reported for these physical and chemical properties of agricultural aerosols appropriate for use in a site-specific emission inventory. The emission rate and transport of the aerosols are also discussed. In addition, mixing ratios of total and gaseous ammonia were measured at the same field in 2007 and 2008. Measurements such as these provide a means to determine whether the fugitive dust emitted from a typical large feedlot represents a health concern for employees of the feeding operation and the nearby community.
Detailed chemical composition of aircraft-sampled particles collected during ISDAC was studied. Filter samples were collected under a variety of conditions in and out of mixed phase and ice clouds in the Arctic. Specifically, particles were sampled from a mixed-phase cloud during a period of observed high concentrations of ice nuclei (IN), a biomass plume, and under relatively clean ambient conditions. Composition of particles was studied on a particle-by-particle basis using several microspectroscopy techniques. Based on the elemental composition analysis, more magnesium was found in Arctic cloud residues relative to ambient air. Likewise, based on the carbon speciation analysis, high IN samples contained coated inorganics, carbonate, and black or brown carbon particles. In the samples collected during a flight through a biomass burning plume, water-soluble organic carbon was the dominant overall composition. Due to their hygroscopic nature, these organics may preferably act as cloud condensation nuclei (CCN) rather than IN. Other ambient samples contained relatively higher fractions of organic and inorganic mixtures and less purely water-soluble organics than found in the biomass particles. The most likely source of inorganics would be sea salt. When present, sea salt may further enhance ice nucleation.
|
263 |
Incipient Motion Of Coarse Solitary ParticlesGulcu, Besim 01 February 2009 (has links) (PDF)
In this study the incipient motion of coarse solitary particles having different specific weights and shapes was investigated. A tilting flume of rectangular cross-section having a net working length of 12 m was used through the experiments. The slope of the channel and the discharge in the channel are the two basic variable parameters that determine the initiation of motion. Particles made of cement and mixture of cement and iron dust in certain ratios were used in the experiments with an obstructing element of various heights right behind the particles. Dimensionless hydraulic parameters determined from theoretical analysis were related to each other. Velocity profiles over the flow depths were measured and flow conditions corresponding to critical conditions were evaluated in terms of critical velocities and shear velocities. The findings of this study were compared with the results of similar studies given in the literature.
|
264 |
Contact electrification and charge separation in volcanic plumesLindle, Molly Eileen 05 April 2011 (has links)
Volcanogenic lightning has a long documented history in the scientific field, though its origins are still poorly understood. The interactions leading to electrification of ash plumes is essentially a function of the microphysics controlling and affecting ash particle collisions. This thesis presents measurements made on charged particle interactions in a fluidized bed, with large-scale applications to the phenomenon of volcanogenic lightning and charged particle dynamics in volcanic plumes. Using a fluidized bed of ash samples taken from Ecuador's Volcán Tungurahua, particles are introduced to a collisional environment, where they acquire an associated polarity. A charged copper plate is used to collect particles of a given polarity, and particle size distributions are obtained for different weight fractions of the ash. It is observed that relatively smaller particles acquire a net negative charge, while larger particles in the sample charge positively. This is a well-documented occurrence with perfectly spherical, chemically identical samples, but this work represents one of the first applications of the principle to volcanic ash. Image analysis is preformed to determine the size distribution associated with specific polarities, and the associated minimum charge on each particle is calculated based on the plate collection height and particle size. We also present results that demonstrate the relationship between particle collisions and the amount of charge exchanged. Using techniques developed to examine the collision rate within a flow, combined with the charging rates determined from this experiment, we determine a maximum charge exchange rate of 1.28±0.23 electrons transferred per collision.
|
265 |
In-vitro inhalation performance for formoterol dry powder and metred dose inhalers : in-vitro characteristics of the emitted dose from the formoterol dry powder and metred dose inhalers to identify the influence of inhalation flow, inhalation volume and the number of inhalation per doseAlaboud, S. January 2011 (has links)
The present work aimed at assessing the dose emission and aerodynamic particle size characteristics of formoterol fumarate from Atimos Modullite, a metered dose inhaler (MDI) and Foradil Aeroliser, Easyhaler, and Oxis Turbuhaler dry powder inhalers (DPI) at different inhalation flow rates and volumes using in vitro methodology. Recognised methods have been adopted and validated to generate the results. The in vitro characteristics of formoterol were measured according to standard pharmacopeial methodology with adaptation to simulate routine patient use. The dose emission from the Atimos Modulite was determined using inhalation volumes of 4 and 2 L and inhalation flows of 10, 28.3, 60, and 90 L/min. The %nominal dose emitted was consistent between the various flow rates and inhalation volumes of 4 and 2L. The particle size distribution was measured using an Anderson Cascade Impactor (ACI) combined with a mixing inlet valve to measure particle size distribution at inhalation flow rates below 30 L/min. The particle size distribution of formoterol from Atimos Modulite was measured using inhalation flows of 15, 28.3, 50, and 60 L/min with and without different spacers, Aerochamber and Volumatic. The mean fine particle dose (%nominal dose) through an Atimos without spacer were 53.52% (2.51), 54.1% (0.79), 53.37% (0.81), 50.43% (1.92) compared to Aerochamber 63.62% (0.44), 63.86% (0.72), 64.72% (0.47), 59.96% (1.97) and Volumatic 62.40% (0.28),63.41% (0.52), 64.71% (0.61), 58.43% (0.73), respectively. A small decrease in the fine particle dose was observed as the inhalation flow increased, but this was not significant. The respective mean mass aerodynamic diameter (MMAD) increased as the flow rate was increased from 15 of 60 L/min. Results also suggests that the use of spacers provides better lung deposition for patients with problems using MDI. The dose emission from the Foradil Aeroliser was determined using inhalation volumes of 4 and 2 L, at inhalation flows of 10, 15, 20, 28.3, 60, and 90 L/min plus two inhalations per single dose. The %nominal dose emitted using 2 L inhalation volume was approximately half when compared to results obtained using inhalation volume of 4 L. A significantly (p<0.001) higher amount of drug was also emitted from Easyhaler® at inhalation volume of 4 L through flow rates of 10, 20, 28.3, 40, and 60 L/min compared 2 L. Similar results were observed through Oxis Turbuhaler at inhalation flow rates of 10, 20, 28.3, 40, and 60 L/min. Comparative studies were also carried out to evaluate the particle size distribution of formoterol through the DPIs. The nominal fine particle dose through Aeroliser using inhalation flows of 10, 20, 28.3, 60 and 90 L/min were 9.23%, 14.70 %, 21.37%, 28.93%, and 39.70% for the 4 L and 4.17%, 5.55%, 7.28%, 8.41%, and 11.08% for the 2 L, respectively. The respective MMAD significantly (p<0.001) decreased with increasing flow rates. Aeroliser performance showed significant (p<0.001) increase in the % nominal fine particle dose for two inhalations compared to one inhalation at both 4 and 2 L. The Easyhaler was measured using inhalation flows of 10, 20, 28.3, 40, 60 L/min. The nominal fine particle dose were 19.03%, 27.09%, 36.89%, 49.71% and 49.25% for the 4 L and 9.14%, 15.44%, 21.02%, 29.41%, 29.14% for the 2 L, respectively. The respective MMAD significantly (p<0.001) decreased with increasing flow rates. Easyhaler performance at both 4 and 2 L showed no significant differences between one and two inhalations at low flow rates (10, 20, 28.3), but this was significant (p<0.05) at higher flow rates (40 and 60 L/min). The Oxis Turbuhaler was also measured using inhalation flows of 10, 20, 28.3, 40, 60 L/min. The nominal fine particle dose were 12.87%, 24.51%, 28.25%, 34.61%, 40.53% for the 4 L and 8.55%, 15.31%, 21.36%, 19.53%, 22.31% for the 2 L, respectively. Turbuhaler performance showed significant (p<0.05) differences between one and two inhalations at varying flow rates 2 L inhalation volumes, but not at 4 L. The use of Foradil Aeroliser delivers small particles as the Oxis Turbuhaler using two inhalations hence delivering formoterol deep into the lungs. Also, this thesis shows that high flow resistance of Turbuhaler will indeed influence the ability of patients with severe asthma or children to use the system. Beside, Easyhaler produced the highest drug delivery to the lungs, thus, making it a more desirable system to use, especially for children and asthma sufferers.
|
266 |
EXPERIMENTAL STUDIES OF THE SATURATION LEVEL OF METHANE HYDRATE IN THE EASTERN NANKAI TROUGH SEDIMENTSKawasaki, Tatsuji, Fujii, Tetsuya, Nakamizu, Masaru, Lu, Hailong, Ripmeester, John A. 07 1900 (has links)
The pore saturation of natural gas hydrate in sediments is a key parameter for estimating hydrate resources in a reservoir. For a better understanding of gas hydrate distribution, the experimental study of the pore saturation of methane hydrate in sediments from a hydrate reservoir in the Eastern Nankai Trough have been carried out. In total, eleven samples, comprising sand, silty sand, silt, and representative of the main sediment types identified in the Eastern Nankai trough, were tested. The results obtained clearly indicate a particle size and clay content dependent trend: almost 100% of pores were saturated with methane hydrate in sand when little silt and clay were present, decreasing to ~ 13% in silty sand (sand 54%, silt 41% and clay 5%), and ~ 4% in clayey silt. These results are generally consistent with NMR logging results for high-saturation samples, but somewhat different for samples with medium or low saturation levels.
|
267 |
A study of the phenomenon of bridging of sugarcane bagasseJanuary 1996 (has links)
This work reports the results of a systematic study of the factors that affect
the bridging behaviour of bagasse. It shows that traditional bulk solids theory
is inappropriate for predicting bagasse flow mainly because of the
impossibility of obtaining a reliable measure of internal friction. It
demonstrates the significant influence of fibre length and moisture content
on its handling charateristics.
Correlations of pertinent bulk properties such as compactibility, tensile
strength, surface friction and translation of vertical into horizontal pressure
have been developed. These were derived as a result of measurements in
equipment that was designed for the purpose.
Finally, an empirical model utilising these correlations is proposed by which
the likelihood of bridge formation in any piece of bagasse handling equipment
can be determined. The validity of the model is assessed by comparison with
bridging tests that were performed under controlled conditions. / Thesis (Ph.D.)-University of Natal, 1996
|
268 |
Grain-scale Comminution and Alteration of Arkosic Rocks in the Damage Zone of the San Andreas Fault at SAFODHeron, Bretani 2011 December 1900 (has links)
Spot core from the San Andreas Fault Observatory at Depth (SAFOD) borehole provides the opportunity to characterize and quantify damage and mineral alteration of siliciclastics within an active, large-displacement plate-boundary fault zone. Deformed arkosic, coarse-grained, pebbly sandstone, and fine-grained sandstone and siltstone retrieved from 2.55 km depth represent the western damaged zone of the San Andreas Fault, approximately 130 m west of the Southwest Deforming Zone (SDZ). The sandstone is cut by numerous subsidiary faults that display extensive evidence of repeating episodes of compaction, shear, dilation, and cementation. The subsidiary faults are grouped into three size classes: 1) small faults, 1 to 2 mm thick, that record an early stage of fault development, 2) intermediate-size faults, 2 to 3 mm thick, that show cataclastic grain size reduction and flow, extensive cementation, and alteration of host particles, and 3) large subsidiary faults that have cemented cataclastic zones up to 10 mm thick. The cataclasites contain fractured host-rock particles of quartz, oligoclase, and orthoclase, in addition to albite and laumontite produced by syn-deformation alteration reactions. Five structural units are distinguished in the subsidiary fault zones: fractured sandstones, brecciated sandstones, microbreccias, microbreccias within distinct shear zones, and principal slip surfaces. We have quantified the particle size distributions and the particle shape of the host rock mineral phases and the volume fraction of the alteration products for these representative structural units. Shape characteristics vary as a function of shear strain and grain size, with smooth, more circular particles evolving as a result of increasing shear strain. Overall, the particle sizes are consistent with a power law distribution over the particle size range investigated (0.3 µm < d < 400 µm). The exponent (fractal dimension, D) is found to increase with shear strain and volume fraction of laumontite. This overall increase in D and evolution of shape with increasing shear strain reflects a general transition from constrained comminution, active at low shear strains to abrasion processes that dominate at high shear strains.
|
269 |
ASSESSING THE RELATIVE MOBILITY OF SUBMARINE LANDSLIDES FROM DEPOSIT MORPHOLOGY AND PHYSICAL PROPERTIES: AN EXAMPLE FROM KUMANO BASIN, NANKAI TROUGH, OFFSHORE JAPANMoore, Zachary T 01 January 2015 (has links)
A prominent landslide deposit in the Slope Basin seaward of the Megasplay Fault in the Nankai Trough was emplaced by a high-mobility landslide based on analysis of physical properties and seismic geomorphology. Slide acceleration is a critical variable that determines amplitude of slide-generated tsunami but is many times a variable with large uncertainty. In recent controlled laboratory experiments, the ratio of the shear stress to yield strength (defined as the Flow Factor) controls a wide spectrum of mass movement styles from slow, retrogressive failure to rapid, liquefied flows. Here, we apply this laboratory Flow Factor approach to a natural landslide in the Nankai Trough by constraining pre-failure particle size analysis and porosity. Several mass transport deposits (MTDs), were drilled and cored at Site C0021 in the Nankai Trough during International Ocean Discovery Program (IODP) Expedition 338. The largest, MTD B, occurs at 133-176 meters below seafloor and occurred approximately 0.87 Mya. Slide volume is 2 km3, transport distance is 5 km, and average deposit thickness is 50 m (maximum 180 m). Pre-failure water content was estimated from shallow sediments at Site C0018 (82%). The average grain size distribution is 37% clay-sized, 60% silt-sized, and 3% sand-size particles as determined by hydrometer analyses of the MTD. Together, the water content and clay fraction predict a Flow Factor of 3.5, which predicts a relatively high mobility slide. We interpret that the landslide that created MTD B was a single event that transported the slide mass relatively rapidly as opposed to a slow, episodic landslide event. This is supported by the observation of a completely evacuated source area with no remnant blocks or retrogressive headscarp and an internally chaotic seismic facies with large entrained blocks. This approach can be extended to other field settings characterized by fine-grained siliciclastics and where water content and clay percentages are known.
|
270 |
Characterisation of airborne dust in a South African opencast iron ore mine : a pilot study / Rehan BadenhorstBadenhorst, Rehan January 2013 (has links)
The iron ore mining industry makes use of various processes that result in the release of airborne dust into
the surrounding atmosphere where workers are exposed, to produce a final product. The deposition in the
lung and toxicological influences of airborne dust can be determined by their physical- and chemical
characteristics. The Occupational Health and Safety Act (OHSA) regulations for hazardous chemical
substances have no current system of how the physical- and chemical properties of particulates originating
from specific areas will influence a worker‘s exposure and health, especially for ultrafine particles (UFP). It is
therefore imperative to characterise airborne dust containing micrometer and UFP size particles originating
from specific areas to determine if there are physical- and chemical characteristics that may or may not
have an influence on the workers‘ health.
Aim: This pilot study is aimed at the physical- and chemical characterisation of the airborne iron ore dust
generated at the process areas of an opencast iron ore mine. Method: Sampled areas included the
Primary-secondary crusher, Tertiary crusher, Quaternary crusher and Sifting house. Gravimetric sampling
was conducted through the use of static inhalable- and respirable samplers in conjunction with optical- and
condensation particle counters that were placed near airborne dust- emitting sources. Physical- and
chemical characterisation was done with the use of scanning electron microscopy (SEM) and energy
dispersive X-ray spectroscopy (EDS). Results: The results found in the study indicate high mass
concentration levels of inhalable dust at all four process areas, as well as high levels of respirable dust
found at the primary- secondary crusher area. Particle size distribution optical particle counter (OPC) results
indicate that the majority of particles at all four process areas are in the region of 0.3 μm in size.
Condensation particle counter (CPC) results integrated with OPC results indicate that at the primarysecondary
and Tertiary crushers the majority of particles are found to be in the size fraction <0.3 μm. SEM
analysis indicates that particle agglomeration largely occurs in the airborne iron ore dust. Particle splinters
originating from larger particle collisions and breakages are present in the airborne dust. EDS analysis
indicates that the elemental majority of the airborne iron ore dust consists of iron, oxygen, carbon,
aluminium, silicon, potassium and calcium. The elemental percentages differ from each process area where
an increase in iron and decrease in impurities can be seen as the ore moves through the beneficiation
process from the Primary-secondary crusher to the Sifting house. Conclusion: The results obtained from
the physical- and chemical properties of the airborne iron ore dust indicate high risk of over-exposure to the
respiratory system, as well as possible ultrafine particle systemic exposure, that may overwhelm the
physiological defense mechanisms of the human body and lead to reactive oxygen species (ROS) formation
and the development of pathologies such as siderosis, silicasiderosis and lung cancer. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
|
Page generated in 0.0623 seconds