• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 13
  • 11
  • 6
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 165
  • 165
  • 39
  • 36
  • 36
  • 25
  • 23
  • 23
  • 21
  • 21
  • 20
  • 19
  • 18
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Determination of the spatiotemporal organization of mitochondrial membrane proteins by 2D and 3D single particle tracking and localization microscopy in living cells

Dellmann, Timo 01 July 2020 (has links)
Mitochondria are the power plant of most non-green eukaryotic cells. In order to understand mitochondrial functions and their regulation, knowledge of the spatiotemporal organization of their proteins is important. Mitochondrial membrane proteins can diffuse within membranes. They are involved in diverse functions e.g. protein import, cell respiration, metabolism, metabolite transport, fusion, fission or formation of the mitochondrial architecture. Furthermore, mitochondria compose of different subcompartments with different tasks. Especially, the inner mitochondrial membrane (IM), where the oxidative phosphorylation (OXPHOS) takes places, has a complex architecture with cristae extending into the matrix. The present work revealed the restricted localization of some mitochondrial proteins to specific membrane sections and linked it to their function or bioenergetic circumstances in the living cell. 
Single particle tracking (SPT) techniques like tracking and localization microscopy (TALM) allow to localize proteins with a precision below 20 nm. Additionally, tracking single proteins provides information about their mobility, dynamic and their spatiotemporal organization. TALM uses proteins, which were genetically tagged either with the HaloTag® (HaloTag) or the fSnapTag® (fSnapTag). These tags can be orthogonally and posttranslationally stained with specific and self-marking dyes. If the dyes are conjugated to the respective substrate of the tag. Single molecule labeling of mitochondrial proteins was performed substoichiometrically using membrane permeable rhodamine dyes, either tetramethylrhodamine (TMR) or silicon rhodamine (SiR). TALM allowed to localize proteins in different mitochondrial subcompartments. The gained trajectories and trajectory maps of mitochondrial proteins revealed their spatiotemporal organization. In the case of IM proteins like F1FO ATP synthase (Complex V - CV) a restricted diffusion in the CM, which is part of the continuous IM, was determined. The unimpeded diffusion of mitochondrial proteins in the outer mitochondrial membrane (OM) was compared with the mobility of IM proteins. The diffusion of mitochondrial IM proteins was restricted by the IM architecture and their diffusion coefficients were lower. Furthermore, significant differences of different mitochondrial IM proteins were compared, showing different localizations in the IM often coupled to their function, accompanied by different spatiotemporal organization and diffusion coefficients. Furthermore, a distinction was made between diffusion of proteins in the inner boundary membrane (IBM) and proteins that preferentially diffuse in the cristae membrane (CM). Evaluating trajectory maps, the different subcompartments in the IM were revealed by trajectories and the trajectory directionality, allowing the identification of mitochondrial proteins, which mark these subcompartments.
The morphology of mitochondria / mitochondrial networks and their bioenergetic parameters are linked to the metabolic states of the cell. In this work, the connection of the spatiotemporal protein organization of CV and the IM architecture was uncovered on the micro- and nanoscopic level and linked to the metabolic state of the cell. It was determined that the spatiotemporal organization of the CV was altered, when CV was inhibited. In addition, the bioenergetic influence of cells on the spatiotemporal behavior of CV and the reorganization of the IM architecture was investigated by TALM and compared with results of electron microscopy images. It was shown that starvation of cells led to a loss of cristae and thus to an increased mobility and spatiotemporal reorganization of CV. Taken together, the results presented in this work showed that a correctly functioning and active CV helps to maintain the IM architecture and both, the spatiotemporal organization of CV and the IM architecture were coupled to the metabolic state.. 
In order to investigate putative protein-protein interactions by colocalization and co-locomotion studies on single molecule level, dual color SPT is needed. Therefore, posttranslational and substoichimetric labeling as performed in TALM was tested for its potential of protein-protein interaction studies of mitochondrial membrane proteins. Here, a genetically double tagged translocase of the outer membrane subunit-20 (Tom20) (Tom20:HaloTag:fSnapTag) acted as a positive control. It turned out that substoichimetric, posttranslational labeling of mitochondrial proteins was not suitable for protein-protein interaction studies on mitochondrial proteins, because it was restricted by the low labeling degrees needed for TALM. However, dual-color TALM still allowed to study effects of proteins influencing the IM architecture and to study their influence on the spatiotemporal organization of CV. The co-transfection of Mic10, as the central protein of the mitochondrial inner membrane organizing system / mitochondrial contact site complex / mitochondrial organizing structure (MINOS / MICOS / MitOS (MINOS/MICOS)), altered the regular and aligned organization of the cristae. This was measured by a changed spatiotemporal organization of the CV, such as the loss of the perpendicular oriented of CV subunit-γ (CV-SUγ) cristae trajectories. In contrast to this, co-transfection of CV subunit-e (CV-SUe), important for dimerization of CV, increased the number of cristae trajectories. 
Mitochondria are three-dimensional (3D) cell organelles. Consequently, subcompartments like the IBM and CM are a 3D space in which CV is localized and diffuses. Thus, the diffusion of mitochondrial proteins is underestimated by two-dimensional SPT e.g. lateral confined diffusion can result from mitochondrial proteins diffusing along the z-axis of the microscope. In order to reveal the 3D spatiotemporal organization of CV, the potential of TALM to be extended to a 3D-SPT technique was investigated. Therto a cylindrical lens was installed in the emission path of a total internal reflection fluorescence (TIRF) microscope. This leads to an astigmatically distorted point spread function (PSF) of the fluorescent single molecule signals. This distortion allowed the reconstruction of single molecule localizations of CV to a superresolved image of the IM, in living cells. In addition, 3D-TALM enabled to display the 3D architecture of the IM by 3D trajectories of CV. 3D-TALM was able to detect whether CV diffuses in the IBM or in the CM, and extended the information about its mobility in the CM that it takes place in a disc-like manner. In this way it could be shown that CV is mobile within the cristae in all directions. Finally, 3D-TALM revealed an altered IM architecture caused by the metabolic state of the cell. As performed in two-dimensional TALM, the cells were kept under starving conditions. Here the now tubular IM architecture was revealed by 3D-TALM. The reversed metabolic state under improved respiratory conditions unexpectedly led to a more diverse IM architecture. These ultrastructural changes were also revealed by electron microscopy. Consequently, 3D-TALM enabled the study of IM architecture by tracking CV under different metabolic conditions, allowing an ultrastructural analysis of mitochondria in living cells. In addition, 3D TALM provided the spatiotemporal organization of CV under different metabolic conditions, so that the diffusion coefficients of CV could be related to changes in IM architecture caused by the metabolic condition.
92

Force-Based Characterization of Selectin Ligands Expressed by Solid Tumors with Implications in Cancer Metastasis and Thrombosis

Martin, Eric W. January 2018 (has links)
No description available.
93

Water Quality Simulation with Particle Tracking Method

Sun, Yuanyuan 07 November 2013 (has links)
In the numerical simulation of fluid flow and solute transport in porous media, finite element method (FEM) has long been utilized and has been proven to be efficient. In this work, an alternative approach called random walk particle tracking (RWPT) method is proposed. In this method, a finite number of particles represent the distribution of a solute mass. Each particle carries a certain fraction of the total mass and moves in the porous media according to the velocity field. The proposed RWPT model is established on a scientific software platform OpenGeoSys (OGS), which is an open source initiative for numerical simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous media. The flow equation is solved using finite element method in OGS. The obtained hydraulic heads are numerically differentiated to obtain the velocity field. The particle tracking method does not solve the transport equation directly but deals with it in a physically stochastic manner by using the velocity field. Parallel computing concept is included in the model implementation to promote computational efficiency. Several benchmarks are developed for the particle tracking method in OGS to simulate solute transport in porous media and pore space. The simulation results are compared to analytical solutions and other numerical methods to test the presented method. The particle tracking method can accommodate Darcy flow as it is the main consideration in groundwater flow. Furthermore, other flow processes such as Forchheimer flow or Richards flow can be combined with as well. Two applications indicate the capability of the method to handle theoretical real-world problems. This method can be applied as a tool to elicit and discern the detailed structure of evolving contaminant plumes. / Bei der numerischen Simulation von Strömung und Stofftransport in porösen Medien hat die Nutzung der Finite-Elemente-Methode (FEM) eine lange Tradition und wird sich als effizient erweisen. In dieser Arbeit wird ein alternativer Ansatz, die random walk particle tracking (RWPT) Methode vorgeschlagen. Bei diesem Verfahren stellt eine endliche Anzahl von Partikeln die Verteilung eines gelösten Stoffes dar. Jedes Teilchen trägt einen bestimmten Bruchteil der Gesamtmasse und bewegt sich in den porösen Medien gemäß des Geschwindigkeitsfeldes. Das vorgeschlagene RWPT Modell basiert auf der wissenschaftlichen Softwareplattform OpenGeoSys (OGS), die eine Open-Source-Initiative für die numerische Simulation thermo-hydro-mechanisch-chemischen (THMC) in porösen Medien darstellt. Die Strömungsgleichung wird in OGS mit der Finite-Elemente-Methode gelöst. Der Grundwasserstand wird numerisch berechnet, um das Geschwindigkeitsfeld zu erhalten. Die Partikel-Tracking-Methode löst die Transportgleichung nicht direkt, sondern befasst sich mit ihr in einer physikalisch stochastische Weise unter Nutzung des Geschwindigkeitsfeldes. Zur Berücksichtigung der Recheneffizienz ist ein Parallel Computing-Konzept in der Modell-Implementierung enthalten. Zur Simulation des Stofftransports in porösen Medien und im Porenraum wurden mehrere Benchmarks für die Partikel-Tracking-Methode in OGS entwickelt. Die Simulationsergebnisse werden mit analytischen Lösungen und andere numerische Methoden verglichen, um die Aussagefähigkeit des vorgestellten Verfahrens zu bestätigen. Mit der Partikel-Tracking-Methode kann die Darcy-Strömung gelöst werden, die das wichtigste Kriterium in der Grundwasserströmung ist. Außerdem bewältigt die Methode auch andere Strömungsprozesse, wie die Forchheimer-Strömung und die Richards-Strömung. Zwei Anwendungen zeigen die Leistungsfähigkeit der Methode bei der prinzipiellen Handhabung von Problemen der realen Welt. Die Methode kann als ein Instrument zur Aufdeckung Erkennung der detaillierte Struktur von sich entwickelnden Schadstofffahnenangewendet werden.
94

On the Agglomeration of Particles in Exhaust Gases

Majal, Ghulam January 2018 (has links)
Particulate emissions from road transportation are known to have an adverse impact on human health as well the environment. As the effects become more palpable, stricter legislation have been proposed by regulating bodies. This puts forward a challenge for the automotive industry to develop after treatment technologies to fulfil the progressively stricter legislation. At present, the most common after-treatment technologies used for particulates are the diesel and gasoline particulate filters. The typical size distribution of the particles is such that the smallest particles in terms of size are in numbers the largest, although they are not influencing the total particle mass significantly. The most recent legislation have included restrictions on the particle number as well as particle mass. In this thesis numerical tools for studying the transport and interaction of particles in an exhaust flow are evaluated. The specific application is particle agglomeration as a mean to reduce the number of particles and manipulate the size distribution. As particles agglomerate the particle number distribution is shifted and larger sized agglomerates of particles are created reducing the number of ultra-fine particles. The particle agglomeration is obtained by forcing sudden acceleration and deceleration of the host gas carrying the particles by variations in the cross sectional areas of the geometry it is passing through. Initially, a simplified one dimensional model is utilized to assess the governing parameters of particle grouping. Grouping here means that the particles form and are transported in groups, thus increasing the probability for agglomeration. The lessons learned from the 1D-model are also used to design the three dimensional geometry: an axisymmetric corrugated pipe. Two different geometries are studied, they both have the same main pipe diameter but different diameter on the corrugations. The purpose is to find the potential onset of flow instabilities and the influence of 3D-effects such as recirculation on the agglomeration. The CFD simulations are performed using DES methodology. First the simulations are run without particles in a non pulsatile flow scenario. Later particles are added to the setup in a one way coupled approach (no particle-particle interaction). The main results were: 1) An additional criterion for grouping to the ones given in previous work on the 1D model is proposed. It is found that grouping is more likely if the combination of the pulse frequency and geometric wavelength is large. Furthermore, smooth pulse forms (modelling the modulation in the flow due to the geometry) yielded more grouping than other more abrupt pulse shapes. However, idealised inlet pulses underestimate the extent of grouping compared to actual engine pulses. 2) For the geometry with larger maximum cross sectional area stronger flow separation was observed along with higher turbulent kinetic energy. 3) Particles were added in the flow field and a reduction in the particle count was observed in the initial simulations for particles going from the first corrugated segment to the last. Natural extensions of the present work would be to consider pulsatile flow scenarios, particle-particle interaction and a polydisperse setup for the particles / <p>QC 20181008</p>
95

Evaluation of groundwater flow and contaminant transport at the Wells G&H Superfund Site, Woburn, Massachusetts, from 1960 to 1986 and estimation of TCE and PCE concentrations delivered to Woburn residences

Metheny, Maura A. 20 July 2004 (has links)
No description available.
96

<b>Defocused Distance Prediction in 3D Particle Tracking</b>

Baoxuan Tao (18858733) 22 June 2024 (has links)
<p dir="ltr">Particle tracking velocimetry, also known as PTV, is a technology to measure velocity and study the flow field in fluid by observing change in position of individual tracer particles over time. A laser sheet illuminates a thin layer of the sample, in which particles emit fluorescent light and are visible to the camera. Particles at different distances from the microscope lens focal plane are visible, because particle diameter is much smaller than the thickness of laser sheet in micro-scale. The defocused distance changes the shape of particle seen by the camera. Analyzing particle shapes and obtaining the defocused distance of particles completes the third dimension of PTV with the use of a single camera. One approach to obtain defocused distance from particle shape is by comparing particle shapes with calibration images of known defocused distance. The accuracy of PTV relies on the collection of proper calibration images. There are three methods involved in this work. The first approach is to use synthetic images generated by solving Lommel differential equations, which describe the intensity distribution of particles under the impact of defocusing aberration. It was later discovered that the point source assumption inherent in Lommel function causes inaccuracy in generated calibration images. The second approach captures particle images while manually shifting the microscope stage in the z-direction. This approach causes systematic error by ignoring the refractive index of the immersion medium. The third approach is to use a microscale reference ramp as calibration target. Results are experimentally compared with particle shapes obtained from pressure driven flow with known velocity profile.</p>
97

The dynamics of neutrally buoyant particles in isotropic turbulence : an experimental study / Dynamique de particules à flottabilité nulle suspendues dans une turbulence isotrope : une étude expérimentale

Elhimer, Medhi 20 June 2012 (has links)
Le but de cette étude expérimentale est de caractériser la dynamique de particules solides, à flottabilité nulle, incluse dans un écoulement turbulent isotrope en décroissance libre. Les particules utilisées sont de forme sphérique et ont un diamètre de 4 à 5 fois plus grand que l'échelle spatial de Kolmogorov de l'écoulement. De part leur taille, les particules ont également un nombre de Stokes proche de l'unité. On s'attend alors à ce que ces particules aient une dynamique différente de celle du fluide environnant. Dans cette étude, ont se propose de quantifier les différences de vitesses entre les deux phases à l'aide d'une technique de vélocimétrie simultanée / In this experimental study, the focus is made on the characterization of the dynamics of solid neutrally buoyant particles embedded in a freely decaying, nearly isotropic turbulence, with a weak mean flow. The particles are spherical with diameters several times larger than the Kolmogorov scale. The study of this flow configuration is still challenging both theoretically and numerically. Due to large particle sizes, the local flow around particles can not be considered as uniform and due to fluid-particle density ratio of around unity, the history and Basset forces cannot be neglected in comparison with the viscous drag force. Particle equation of motion is then fully non-linear, in contrast to the equation for heavy particles with diameters smaller then the Kolmogorov scale, for which only the Stokes drag is considered. In several experimental and numerical studies, the effect of particle size on velocity and acceleration statistics has been investigated (Homann and Bec 2010 ; Qureshi et al. 2008 ; Ouellette et al. 2008 ; Xu and Bodenschatz 2008). In the case of isotropic turbulence, Homann and Bec (2010) show that while the PDF of the particle velocity normalized by the square root of its variance does not vary with particle size, the variance itself is size dependent. A scaling relation for particle velocity variance has been proposed by using the Faxen correction (Gatignol 1983) which takes into account the non uniformity of the fluid flow at the scale of the particle. The aim of our research is to further study the dependence of particle dynamics on particle size. To that purpose, a turbulence generator has been set-up and the resulting turbulence is characterized. Then the flow was seeded with millimeter sized, neutrally-buoyant particles and the velocity of the two phases have been measured simultaneously. Simultaneous measurements of particle and surrounding fluid velocities show that although the global velocity statistics of the two phases have comparable values, the particles may have different local velocity from the velocity of the neighboring fluid
98

Étude du trafic vésiculaire des récepteurs glutamatergiques de type AMPA : caractérisation d’une nouvelle protéine auxiliaire / Study of the vesicular trafficking of AMPA-type glutamate receptor : saraterization of a novel AMPA receptor auxiliairy protein

Renancio, Cédric 18 December 2013 (has links)
Les récepteurs du glutamate de type AMPA (rAMPA) sont les acteurs principaux de la transmission synaptique excitatrice rapide. Leur abondance au niveau de la densité postsynaptique est essentielle pour l'établissement et le maintien de la fonction synaptique, et est le résultat d'un trafic hautement dynamique. De nombreuses études ont permis de caractériser les mécanismes de diffusion membranaire impliqués dans l’adressage des rAMPA jusqu’à la synapse. Le rôle majeur des protéines auxiliaires des rAMPA dans la modulation de cette étape de trafic a été démontré. Par ailleurs, il est suggéré que la localisation synaptique des rAMPA est aussi régulée lors des phases plus précoces du trafic intracellulaire, c’est-à-dire de l'appareil de Golgi vers la membrane plasmique via les vésicules post-Golgiennes. Cependant le trafic vésiculaire post-Golgien des rAMPA n'a jamais été visualisé et reste donc encore très mal compris. En collaboration avec l'équipe de Guus Smit (Amsterdam), j’ai participé à la caractérisation d’une nouvelle protéine auxiliaire des rAMPA, appelée Shisa6. Dans le cadre de ce projet, j’ai pu étudier le rôle de cette protéine sur la diffusion membranaire des rAMPA en utilisant une technique de suivi de particule unique (Quantum dot) développée au laboratoire. Mon projet de thèse principal a consisté à étudier le trafic vésiculaire post-Golgien des rAMPA par le développement d’une nouvelle méthode d’étude. En effet, l'échec dans la visualisation dynamique du trafic vésiculaire des récepteurs pourrait être expliqué par un faible rapport signal/bruit, conséquence d'une faible concentration vésiculaire en rAMPA combinée à un bruit de fond important dû aux marquages provenant du réticulum endoplasmique (RE) et de la membrane plasmique. Dans le but de surpasser cette difficulté, nous avons mis au point un outil ingénieux (système ARIAD) afin de bloquer les rAMPA dans le RE et contrôler, par l'ajout d'un ligand, leur sécrétion du RE jusqu'à la membrane plasmique. Grâce à cet outil, nous avons non seulement augmenté considérablement la concentration des rAMPA dans les vésicules post-Golgiennes, mais aussi éliminé le bruit de fond membranaire. Par la technique de FRAP nous avons pu éliminer le bruit de fond provenant du RE. Une telle approche, combinée à des techniques d'imagerie sur neurones vivants, nous a permis de visualiser pour la première fois le trafic vésiculaire post-Golgien des rAMPA et de l’étudier. / AMPA-type glutamate receptors (AMPAR) are the main actors of the fast excitatory synaptic transmission. Their abundance at the postsynaptic density is essential for the establishment and maintenance of synaptic function, and is the result of a highly dynamic trafficking. Many studies have characterized the membrane diffusion mechanisms involved in the AMPAR synaptic localization, and revealed the critical role of the AMPAR auxiliary proteins in the modulation of this trafficking. Furthermore, it is suggested that AMPAR synaptic localization is also regulated during the early steps of the intracellular trafficking, from the Golgi apparatus to the plasma membrane via the post-Golgi vesicles. However, the post-Golgi vesicular trafficking of AMPAR has never been visualized and therefore remains poorly understood. In collaboration with the Guus Smit team (Amsterdam), I participated in the caracterization of a novel AMPAR auxiliary protein called Shisa6. As part of this project, I studied the role of this protein on the AMPAR membrane diffusion, using a method of single particle tracking (Quantum dot) developed in the laboratory. My main thesis project was to study the post-Golgi vesicular trafficking of AMPAR through the development of a new experimental protocol. Indeed, the failure in the dynamic visualization of the receptor vesicular trafficking could be explained by a low signal/noise ratio resulting of a poor AMPAR vesicular concentration, combined with a high background noise due to receptors localized both in the endoplasmic reticulum (ER) and at the plasma membrane. In order to overcome this difficulty, we have used an ingenious tool (ARIAD system) so as to block AMPAR into the ER and, by adding a ligand, control their trafficking from the ER to the plasma membrane. Thanks to this tool we have not only significantly increased the AMPAR concentration in the post-Golgi vesicles, but also eliminated the plasma membrane background noise. The FRAP imaging technique was used in order to remove the ER background noise. Such methodological approach combined with imaging techniques in living neurons, allowed us to clearly visualize for the first time the post-Golgi vesicular trafficking of AMPAR, and to study the mechanisms involved in this trafficking.
99

Quantitative single molecule imaging deep in biological samples using adaptive optics / Imagerie quantitative des molécules uniques en profondeur dans les échantillons biologique à l'aide d'optiques adaptatives

Butler, Corey 04 July 2017 (has links)
La microscopie optique est un outil indispensable pour la recherche de la neurobiologie et médecine qui permet l’étude des cellules dans leur environnement natif. Les processus sous-cellulaires restent néanmoins cachés derrière les limites de la résolution optique, ce qui rend la résolution des structures plus petites que ~300nm impossible. Récemment, les techniques de la localisation des molécules individuelles (SML) ont permis le suivi des protéines de l’échelle nanométrique grâce à l’ajustement des molécules uniques à la réponse impulsionnelle du système optique. Ce processus dépend de la quantité de lumière recueilli et rend ces techniques très sensibles aux imperfections de la voie d’imagerie, nommé des aberrations, qui limitent l’application de SML aux cultures cellulaires sur les lamelles de verre. Un système commercial d’optiques adaptatives est implémenté pour compenser les aberrations du microscope, et un flux de travail est défini pour corriger les aberrations dépendant de la profondeur qui rend la 3D SML possible dans les milieux biologiques complexes. Une nouvelle méthode de SML est présentée qui utilise deux objectifs pour détecter le spectre d’émission des molécules individuelles pour des applications du suivi des particules uniques dans 5 dimensions (x,y,z,t,λ) sans compromis ni de la résolution spatiotemporelle ni du champ de vue. Pour faciliter les analyses de manière quantitative des Go de données générés, le développement des outils biochimiques, numériques et optiques est présenté. Ensemble, ces approches ont le but d’amener l’imagerie quantitative des molécules uniques dans les échantillons biologiques complexes / Optical microscopy is an indispensable tool for research in neurobiology and medicine, enabling studies of cells in their native environment. However, subcellular processes remain hidden behind the resolution limits of diffraction-limited optics which makes structures smaller than ~300nm impossible to resolve. Recently, single molecule localization (SML) and tracking has revolutionized the field, giving nanometer-scale insight into protein organization and dynamics by fitting individual fluorescent molecules to the known point spread function of the optical imaging system. This fitting process depends critically on the amount of collected light and renders SML techniques extremely sensitive to imperfections in the imaging path, called aberrations, that have limited SML to cell cultures on glass coverslips. A commercially available adaptive optics system is implemented to compensate for aberrations inherent to the microscope, and a workflow is defined for depth-dependent aberration correction that enables 3D SML in complex biological environments. A new SML technique is presented that employs a dual-objective approach to detect the emission spectrum of single molecules, enabling 5-dimensional single particle imaging and tracking (x,y,z,t,λ) without compromising spatiotemporal resolution or field of view. These acquisitions generate ~GBs of data, containing a wealth of information about the localization and environment of individual proteins. To facilitate quantitative acquisition and data analysis, the development of biochemical, software and hardware tools are presented. Together, these approaches aim to enable quantitative SML in complex biological samples.
100

Dinâmica de sedimentos coesivos em um estuário altamente estratificado: rio Araranguá, SC / Dynamic of cohesive sediment at stratified estuary: Araranguá River, SC

Couceiro, Mariana Afonso Abade 24 April 2015 (has links)
O objetivo deste estudo é compreender a dinâmica das partículas no estuário do rio Araranguá (SC) em termos de transporte em suspensão, deposição e exportação, em diferentes condições físico-químicas da água, com pH baixo (<4,5) e normal (>=7), e sob condições de regime transiente da descarga fluvial. O estuário do rio Araranguá é classificado como altamente estratificado e dominado pela descarga fluvial. Um aspecto fundamental nos processos que controlam a dinâmica de materiais em suspensão no estuário é a atividade de lavra e beneficiamento do carvão, que gera uma drenagem ácida no rio Mãe Luzia. O seu pH baixo (&#732;3) indica que o processo de floculação é intensificado no interior do estuário. Com o objetivo de melhor entender a hidrodinâmica do estuário, um modelo tridimensional foi implementado para a região. O modelo foi calibrado e validado com dados observados. Simulações com diferentes picos de descarga fluvial (100, 400, 700 e 1000 m3.s-1) e baixa descarga (30 m3.s-1) foram realizadas. Para calcular o transporte do material particulado em suspensão foi desenvolvido um modelo Lagrangeano da trajetória da partícula. O modelo da trajetória utiliza os resultados do modelo hidrodinâmico e a velocidade de decantação das partículas. O estuário respondeu rapidamente às variações da descarga fluvial. A cunha salina foi transportada para fora do estuário durante os picos de 700 e 1000 m3.s-1. A descarga fluvial é o fator dominante no controle da intrusão da salinidade no estuário e, em condições de baixa descarga, o transporte advectivo de sal é dominado pelo termo dispersivo da circulação gravitacional. O tempo de residência médio das partículas no estuário foi menor em condições de pH baixo. A exportação das partículas aumentou com o aumento da descarga fluvial (pico de 1000 m3.s-1), sendo que 27% e 30% foram exportadas para a plataforma interna durante os experimentos com pH baixo e pH normal, respectivamente. A região de deposição das partículas indica que com a diminuição do pH, as partículas passam a depositar mais à jusante no estuário. O evento de descarga de 1000 m3.s-1 não foi capaz de remover a grande maioria das partículas do estuário, mas foi responsável por redistribuir as partículas ao longo do médio estuário, onde se depositaram em condições favoráveis com baixas velocidades e ausência de salinidade. O trabalho demonstra que apesar da alta estratificação do estuário, a acidez de suas águas, seu padrão de circulação, com baixas velocidades e a presença da cunha salina, possuem um papel fundamental no transporte das partículas, resultando em maior potencial de retenção do material em suspensão no estuário do rio Araranguá. / The present study assessed the dynamics of particles of the Araranguá (SC) river estuary in terns of suspended transport, deposition and exportation in different conditions of physical-chemical of water, with low (<4,5) and normal pH (>=7), and transient of river discharge conditions. The Araranguá river estuary is a highly stratified flash-flood dominated. The river basin of the Mãe Luzia river, one of the main tributaries of the Araranguá river, is performed the activity of mining and coal processing, wich generates an acidic drainage. Its low pH indicates that flocculation process is intensified in estuary inner. With the objective of better understanding the estuarine processes, a three-dimensional hydrodynamics model was implemented. The model was calibrated and verified using observational data. Simulations were conducted with freshet peak ranged over 100, 400, 700 and 1000 m3.s-1. Lagrangian particle tracking algorithms was developed to represent the suspended particle transport at estuary. The particle tracking used the montion resulting from hydrodynamics model and the particle settling velocity. The estuary responded quickly the river discharge variations. During the pulse event the velocities at water column were unidirectional down-estuary is shown the barotropic dominates over baroclinic component. During the highest flash flood event (700 and 1000 m3.s-1) the salt water was pushed out of the estuary. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system and under low discharge conditions the advective salt transport is dominated by dispersive term of gravitational circulation. The mean residence time of the particles was lowest in pH low conditions. The particles export is great as the river discharge is rising (1000 m3.s-1) with 27% and 30% exported to inner shelf during the experiments with low and normal pH, respectively. The particles deposition local indicates that with the pH decrease the particles become to be deposited further downstream. The discharge event of 1000 m3.s-1 was not able to remove all particles out, but was response to redistribute the particles along of the meddle estuary, where settling in favorable conditions at low velocities and absence of salinity. The study shows that although high stratification of estuary, the acidity of water, the pattern of circulation, at low velocities, and the salt wedge presence play a fundamental role in the transport of particle matter resulting in increased the potential retention of suspended matter in the Araranguá river estuary.

Page generated in 0.2018 seconds