• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 9
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 15
  • 15
  • 14
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Radio Over Fibre Passive Optical Network Integration for The Smart Grid

Jarrar, Majed January 2015 (has links)
During the last three decades, the significant increase in electricity demand, and its consequences, has appeared as a serious concern for the utility companies, but no major changes have been applied to the conventional power grid infrastructure. Recently, researchers have identified efficient control and power distribution mechanisms as the immediate challenges for conventional power grids. The next step for conventional power grid towards the Smart Grid is to provide energy efficiency management along with higher reliability via smart services, in which the application of Information and Communication Technology (ICT) is inevitable. ICT introduces powerful tools to comply with the smart grid requirements. Among various ICT properties, the telecommunication network plays a key role for providing a secure infrastructure. The two-way digital communication system provides an interaction between energy suppliers and consumers for managing, controlling and optimizing energy distribution. We can also define the smart grid as a two-way flow of energy and control information, where the electricity consumers can generate energy using green energy resources. The main objective of this thesis is to select an effective data communication infrastructure to support the smart grid services by considering a hybrid wireless and optical communication technologies. Radio-over-Fibre (RoF) networks are considered as a potential solution to provide a fast, reliable and efficient network backbone with the optical access network integration and the flexibility and mobility of the wireless network. Therefore, we adopt the integration of RoF to Passive Optical Network (PON) as a broadband access network to transmit smart grid data along with the Fiber to the Home/Building/Curb (FTTx) traffic through the shared fibre, and utilizing Wavelength Division Multiplexing (WDM). Finally, we present and analyze the simulation results for the aforementioned infrastructure based on our enhanced ROF-PON integration model.
12

Energy-Efficient Bandwidth Allocation for Integrating Fog with Optical Access Networks

Helmy, Ahmed 03 December 2019 (has links)
Access networks have been going through many reformations to make them adapt to arising traffic trends and become better suited for many new demanding applications. To that end, incorporating fog and edge computing has become a necessity for supporting many emerging applications as well as alleviating network congestions. At the same time, energy-efficiency has become a strong imperative for access networks to reduce both their operating costs and carbon footprint. In this dissertation, we address these two challenges in long-reach optical access networks. We first study the integration of fog and edge computing with optical access networks, which is believed to form a highly capable access network by combining the huge fiber capacity with closer-to-the-edge computing and storage resources. In our study, we examine the offloading performance under different cloudlet placements when the underlying bandwidth allocation is either centralized or decentralized. We combine between analytical modeling and simulation results in order to identify the different factors that affect the offloading performance within each paradigm. To address the energy efficiency requirement, we introduce novel enhancements and modifications to both allocation paradigms that aim to enhance their network performance while conserving energy. We consider this work to be one of the first to explore the integration of fog and edge computing with optical access networks from both bandwidth allocation and energy efficiency perspectives in order to identify which allocation paradigm would be able to meet the requirements of next-generation access networks.
13

Integrated Optoelectronic Devices and System Limitations for WDM Passive Optical Networks

Taebi Harandi, Sareh January 2012 (has links)
This thesis puts focus on the technological challenges for Wavelength Division Multiplexed Passive Optical Network (WDM-PON) implementation, and presents novel semiconductor optical devices for deployment at the optical network unit (ONU). The first-ever reported L-band Reflective semiconductor optical amplifier (RSOA) is presented based on InP-base material. A theoretical model is developed to estimate the optical gain and the saturation power of this device compared to a conventional SOA. Experiments on this device design show long-range telecom wavelength operation, with polarization-independent gain of greater than 20 dB, and low saturation output power of 0 dBm suitable for PON applications. Next, the effect of the amplified spontaneous emission noise of RSOA devices on WDM-PON system is investigated. It is shown through theoretical modeling and simulations that the RSOA noise combined with receiver noise statistics increase probability of error, and induce considerable power penalties to the WDM-PON system. By improving the coupling efficiencies, and by distributing more current flow to the input of these devices, steps can be taken to improve device noise characteristics. Further, in spectrally-spliced WDM-PONs deploying RSOAs, the effect of AWG filter shape on system performance is investigated. Simulation modeling and experiments show that deployment of Flat-band AWGs is critical for reducing the probability of error caused by AWG spectral shape filtering. Flat-band athermal AWGs in comparison to Gaussin-shape counterparts satisfy the maximum acceptable error probability requirements, and reduce the power penalty associated with filtering effect. In addition, detuning between two AWG center wavelengths impose further power penalties to the WDM-PON system. In the last section of this thesis, motivated by RSOA device system limitations, a novel injection-locked Fabry-Perot (IL-FP) device is presented which consists of a gain section monolithically integrated with a phase section. The gain section provides locking of one FP mode to a seed source wavelength, while the phase modulator allows for adjusting the wavelength of the internal modes by tuning bias current to maintain mode-locking. This device counters any mode drifts caused by temperature variations, and allows for cooler-less operation over a wide range of currents. The devices and the performance metrics subsequently allow for a hybrid integration platform on a silicon substrate and integrate many functionalities like reflective modulator with thin film dielectric filter and receiver on a single chip for deployment at the user-end of future-proof low cost WDM-PONs.
14

Integrated Optoelectronic Devices and System Limitations for WDM Passive Optical Networks

Taebi Harandi, Sareh January 2012 (has links)
This thesis puts focus on the technological challenges for Wavelength Division Multiplexed Passive Optical Network (WDM-PON) implementation, and presents novel semiconductor optical devices for deployment at the optical network unit (ONU). The first-ever reported L-band Reflective semiconductor optical amplifier (RSOA) is presented based on InP-base material. A theoretical model is developed to estimate the optical gain and the saturation power of this device compared to a conventional SOA. Experiments on this device design show long-range telecom wavelength operation, with polarization-independent gain of greater than 20 dB, and low saturation output power of 0 dBm suitable for PON applications. Next, the effect of the amplified spontaneous emission noise of RSOA devices on WDM-PON system is investigated. It is shown through theoretical modeling and simulations that the RSOA noise combined with receiver noise statistics increase probability of error, and induce considerable power penalties to the WDM-PON system. By improving the coupling efficiencies, and by distributing more current flow to the input of these devices, steps can be taken to improve device noise characteristics. Further, in spectrally-spliced WDM-PONs deploying RSOAs, the effect of AWG filter shape on system performance is investigated. Simulation modeling and experiments show that deployment of Flat-band AWGs is critical for reducing the probability of error caused by AWG spectral shape filtering. Flat-band athermal AWGs in comparison to Gaussin-shape counterparts satisfy the maximum acceptable error probability requirements, and reduce the power penalty associated with filtering effect. In addition, detuning between two AWG center wavelengths impose further power penalties to the WDM-PON system. In the last section of this thesis, motivated by RSOA device system limitations, a novel injection-locked Fabry-Perot (IL-FP) device is presented which consists of a gain section monolithically integrated with a phase section. The gain section provides locking of one FP mode to a seed source wavelength, while the phase modulator allows for adjusting the wavelength of the internal modes by tuning bias current to maintain mode-locking. This device counters any mode drifts caused by temperature variations, and allows for cooler-less operation over a wide range of currents. The devices and the performance metrics subsequently allow for a hybrid integration platform on a silicon substrate and integrate many functionalities like reflective modulator with thin film dielectric filter and receiver on a single chip for deployment at the user-end of future-proof low cost WDM-PONs.
15

MAC-Layer Algorithm Designs for Hybrid Access Network Supporting SDN Principles

January 2015 (has links)
abstract: Access Networks provide the backbone to the Internet connecting the end-users to the core network thus forming the most important segment for connectivity. Access Networks have multiple physical layer medium ranging from fiber cables, to DSL links and Wireless nodes, creating practically-used hybrid access networks. We explore the hybrid access network at the Medium ACcess (MAC) Layer which receives packets segregated as data and control packets, thus providing the needed decoupling of data and control plane. We utilize the Software Defined Networking (SDN) principle of centralized processing with segregated data and control plane to further extend the usability of our algorithms. This dissertation introduces novel techniques in Dynamic Bandwidth allocation, control message scheduling policy, flow control techniques and Grouping techniques to provide improved performance in Hybrid Passive Optical Networks (PON) such as PON-xDSL, FiWi etc. Finally, we study the different types of software defined algorithms in access networks and describe the various open challenges and research directions. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
16

Deploying Monitoring Trails for Fault Localization in All-optical Networks and Radio-over-Fiber Passive Optical Networks

Maamoun, Khaled M. 24 August 2012 (has links)
Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman’s Problem (CPP) solution and an adapted version of the Traveling Salesman’s Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.
17

Distribuição de divisores de potência em redes ópticas passivas utilizando algoritmos genéticos / Distribution of power dividers in passive optical networks using genetic algorithms

Villalba, Tany Villalba 05 February 2010 (has links)
O objetivo deste trabalho é a otimização da distribuição dos divisores de potência utilizados em redes ópticas passivas, baseados na técnica de algoritmos genéticos, onde cada divisor possui uma única entrada e diversas saídas. O cenário prático de distribuição compreende uma determinada cidade, onde as ruas são as possíveis vias e as casas ou prédios são os possíveis terminais. Partindo de um ponto inicial (OLT - Optical Line Terminator), em geral a central de distribuição, chega-se aos usuários finais (ONUs - Optical Network Units) passando pelos divisores. Observa-se que temos pelo menos um ponto inicial (OLT) e diversos pontos de chegada (as ONUs) - dependendo da quantidade de saídas que o divisor óptico possui, cada uma destas representa um possível usuário ou outro divisor. O posicionamento dos divisores de potência e os caminhos utilizados que usaremos fazem parte de nossa solução. O conjunto destes elementos forma as redes de acesso óptico passivo (PON). Aspectos importantes considerados na otimização: (i) os comprimentos dos cabos desde a OLT até as ONUs, uma vez que ocorrem maiores degradações do sinal à medida que a distância aumenta, bem como aumentam os custos de implantação em proporção direta ao comprimento utilizado; e (ii) margem de potência no enlace e (iii) custo do enlace. Durante o processo de otimização, o algoritmo genético desenvolvido propõe um novo procedimento de busca de caminho denominado nó cíclico. Os resultados obtidos foram validados por comparações obtidas manualmente em redes de menor escala. Interfaces gráficas para carregamento de mapas urbanos a partir de aplicativos como Google map foram desenvolvidas. / This study, based on a genetic algorithm, optimizes the distribution of power dividers used, in the access, by passive optical networks, where each splitter has one input and several outputs. The practical scenario of distribution includes a particular city where the streets are the possible ways and the houses or buildings are the possible terminals. Starting from the OLT (Optical Line Terminal), in general the distribution center, the end users (ONUs - Optical Network Units) are connected to the OLT by a path with power divisions. Observe that we have at least one starting point (OLT) and several points of arrival (the ONUs) - depending on the amount of the optical splitter outputs, each of these representing a user. The positioning of the OLT, ONUs and power dividers are part of the solution we are seeking for and all these elements form the access passive optical network (PON). Important aspects considered: (i) the lengths of the cables from the OLT to the ONUs, once there are more signal degradation as the distance increases, (ii) link power budget and (iii) link cost. During the optimization process, the developed genetic algorithm proposes a new procedure for finding the optimum path which is called cyclic node. The obtained results have been validated by comparison with manual optimization in a smaller scale network. Graphical interfaces have been developed for uploading city maps from aplicatives Google maps.
18

Estudo de esquemas de amplificação para redes PON de longo alcance / Study amplification schemes for long reach PON networks

Paiva, Getúlio Eduardo Rodrigues de 12 April 2012 (has links)
O surgimento de novos serviços que requerem uma largura de banda cada vez maior, bem como o crescente número de usuários de tais serviços, têm introduzido desafios às empresas operadoras de telecomunicações em sua capacidade de atender a estas demandas sem perda apreciável da qualidade de serviço e mantendo, ainda assim, os custos num nível aceitável pelos usuários. Neste contexto, redes ópticas passivas (PONs) vêm atraindo grande interesse em anos recentes. Na sua variante de longo-alcance, as redes PON permitem uma consolidação do uso dos equipamentos e centrais de serviço requeridos, reduzindo custos operacionais e de instalação. Uma das formas de atingir este maior alcance dá-se por meio da inserção de amplificadores ópticos nas redes de acesso. Neste trabalho, portanto, estudaram-se alguns tipos de amplificadores ópticos e suas possíveis aplicações em redes de acesso, levando a topologias de longo alcance e alta capacidade. Foram realizadas avaliações experimentais de um extensor, baseado em amplificadores ópticos semicondutores (SOAs), na rede GPON do CPqD, sob a Meta 3 do Projeto GIGA, possibilitando a obtenção de uma topologia do tipo Fiber-to-the-Building (FTTB) com 80 km de extensão e 128 usuários atendidos por uma única central de serviço. Além dessas validações experimentais, foram simulados computacionalmente SOAs com características otimizadas bem como sistemas que utilizam fibras dopadas com érbio bombeadas remotamente, sendo que nestes últimos, atingiram-se distâncias superiores a 100 km. / The emergence of new services which require an increasing bandwidth, as well as the growing number of users of such services, have introduced challenges to the network operators in regard to their capacity of supporting these demands with no penalty on the required quality of service, while keeping the costs at an acceptable level for the users. In this context, passive optical networks (PONs) have attracted a great deal of interest in recent years. In the long-reach configuration, PON networks allow for a consolidation of equipament usage, reducing operational and installation costs. One way to achieve this longer reach is by the insertion of optical amplifiers in the access network. Therefore, in our work, we have investigated several optical amplifier configurations, as well as their application in access networks, leading to longreach and high capacity network topologies. Experimental evaluations of an extender, based on semiconductor optical amplifiers, were carried out in the CPqD GPON network, under Goal 3 of GIGA Project, allowing the achievement of a Fiber-to-the-Building (FTTB) topology with 80km of extension and 128 users served by a single central office. Besides these experimental validations, were simulated computationally SOAs with optimized characteristics as well as systems using remotely pumped erbium-doped fibers, whereas in the latter were reached distances exceeding 100 km.
19

Deploying Monitoring Trails for Fault Localization in All-optical Networks and Radio-over-Fiber Passive Optical Networks

Maamoun, Khaled M. 24 August 2012 (has links)
Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman’s Problem (CPP) solution and an adapted version of the Traveling Salesman’s Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.
20

Estudo de esquemas de amplificação para redes PON de longo alcance / Study amplification schemes for long reach PON networks

Getúlio Eduardo Rodrigues de Paiva 12 April 2012 (has links)
O surgimento de novos serviços que requerem uma largura de banda cada vez maior, bem como o crescente número de usuários de tais serviços, têm introduzido desafios às empresas operadoras de telecomunicações em sua capacidade de atender a estas demandas sem perda apreciável da qualidade de serviço e mantendo, ainda assim, os custos num nível aceitável pelos usuários. Neste contexto, redes ópticas passivas (PONs) vêm atraindo grande interesse em anos recentes. Na sua variante de longo-alcance, as redes PON permitem uma consolidação do uso dos equipamentos e centrais de serviço requeridos, reduzindo custos operacionais e de instalação. Uma das formas de atingir este maior alcance dá-se por meio da inserção de amplificadores ópticos nas redes de acesso. Neste trabalho, portanto, estudaram-se alguns tipos de amplificadores ópticos e suas possíveis aplicações em redes de acesso, levando a topologias de longo alcance e alta capacidade. Foram realizadas avaliações experimentais de um extensor, baseado em amplificadores ópticos semicondutores (SOAs), na rede GPON do CPqD, sob a Meta 3 do Projeto GIGA, possibilitando a obtenção de uma topologia do tipo Fiber-to-the-Building (FTTB) com 80 km de extensão e 128 usuários atendidos por uma única central de serviço. Além dessas validações experimentais, foram simulados computacionalmente SOAs com características otimizadas bem como sistemas que utilizam fibras dopadas com érbio bombeadas remotamente, sendo que nestes últimos, atingiram-se distâncias superiores a 100 km. / The emergence of new services which require an increasing bandwidth, as well as the growing number of users of such services, have introduced challenges to the network operators in regard to their capacity of supporting these demands with no penalty on the required quality of service, while keeping the costs at an acceptable level for the users. In this context, passive optical networks (PONs) have attracted a great deal of interest in recent years. In the long-reach configuration, PON networks allow for a consolidation of equipament usage, reducing operational and installation costs. One way to achieve this longer reach is by the insertion of optical amplifiers in the access network. Therefore, in our work, we have investigated several optical amplifier configurations, as well as their application in access networks, leading to longreach and high capacity network topologies. Experimental evaluations of an extender, based on semiconductor optical amplifiers, were carried out in the CPqD GPON network, under Goal 3 of GIGA Project, allowing the achievement of a Fiber-to-the-Building (FTTB) topology with 80km of extension and 128 users served by a single central office. Besides these experimental validations, were simulated computationally SOAs with optimized characteristics as well as systems using remotely pumped erbium-doped fibers, whereas in the latter were reached distances exceeding 100 km.

Page generated in 0.028 seconds