Spelling suggestions: "subject:"[een] PHOTOVOLTAIC CELL"" "subject:"[enn] PHOTOVOLTAIC CELL""
11 |
Modeling, Simulation and Characterization of Optoelectronic Properties of 2D-3D CoO-ATO Nano StructuresKhan, Ridita Rahman 03 November 2017 (has links)
Devices for converting solar energy to electrical energy are not considerably efficient, though there are abundant renewable solar energy sources. Therefore there is a continuous call for investigation of new devices that are efficient and eco-friendly thereby contributing to harvested energy technology.
This thesis characterizes the optical constant (refractive index) of a novel material, cobalt oxide-antimony doped tin oxide (CoO-ATO). Thin film of CoO-ATO is generated using spin coating of CoO-ATO solution having 76.33% chloroform, 13.47% polystyrene, 10% antimony doped tin oxide and 0.2% cobalt oxide by weight. The thin film is analyzed through ellipsometry to acquire the refractive index of the material through the visible spectrum, which is used for modeling an antireflective coating in a solar cell. The model is designed and analyzed by simulation using computer simulated technology, and the results of the analysis of a thin film or a nanofiber membrane of the novel material implemented as an antireflective coating layer that affects the absorption efficiency of the optoelectronic device.
The result of the analysis showed enhancement of absorption efficiency within the visible spectrum for both thin film and nanofiber membrane of the novel material CoO-ATO. The absorption through thin film was more than that of the nanofiber membrane.
|
12 |
Photovoltaic Cells and Light Emitting Diodes of Fully Conjugated Rigid-rod PolymerTsai, Jung-lung 24 July 2006 (has links)
Polymer photovoltaic cell (PV cell) utilizes a polymer to absorb photons for generating excitons. When excitons are separated into electrons and holes, the device has the photovoltaic effect. Polymer light emitting diode (PLED) injects electrons and holes respectively from cathode and anode into a polymer emission layer. Some of the electrons and the holes would recombine to induce light emission.
This research used a heterocyclic aromatic rigid-rod polymer poly-p-phenylene- benzobisoxazole (PBO) as the opto-electronic layer, and a conducting material of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) as the hole transport layer. PV cells were fabricated using indium-tin-oxide (ITO) as anode and aluminium as cathode. Same layer arrangement was applied for PLEDs. These two kinds of devices were measured for electrical and optical response.
It was evidenced that the addition of PEDOT:PSS layer facilitated the separation of excitons into electrons and holes at the PBO/PEDOT:PSS interface. Insertion of a LiF layer between PBO layer and Al cathode reduced their energy band gap and facilitated charge transport leading to an enhanced efficiency for PV cells and PLEDs.
Thickness variations were found on spun PBO layer. According to emission intensity, we knew that the PBO layer quality was significant for electroluminescence. Introduction of a PEDOT:PSS layer improved the interface between ITO and PBO. The thickness of PEDOT:PSS layer depended on the ITO surface roughness. With a PEDOT:PSS layer, the opto-electronic efficiency of PV cell and PLED was improved.
|
13 |
Printable and printed perovskites photovoltaic solar cells for autonomous sensors network / Cellules solaires photovoltaïques pérovskites imprimables et imprimées pour réseau de capteurs autonomesGheno, Alexandre 15 December 2017 (has links)
Ce travail de thèse a pour sujet la conception des cellules solaires photovoltaïques à base de pérovskite hybride par le biais de la technologie d’impression jet d’encre. Les deux premiers chapitres font la présentation du contexte de la thèse, à savoir l’alimentation d’un réseau autonome de capteurs, et passent en revue les aspects scientifiques des technologies jet d’encre et photovoltaïque de nouvelle génération. Le troisième chapitre présente la mise au point d’une cellule photovoltaïque à l’état de l’art et son évolution vers une architecture imprimable à basse température de recuit. La problématique de la stabilité des cellules photovoltaïques à pérovskite est aussi abordée. La dernière partie présente les différents aspects et problématiques de l’impression par jet d’encre des trois couches internes d’une cellule solaire pérovskite. Au terme de ce travail la possibilité d’imprimer des cellules solaires pérovskites avec des rendements supérieurs à 10 % a été démontrée, le tout en condition ambiante et à basse température. / This thesis is about the design of photovoltaic solar cells based on hybrid perovskite using inkjet printing technology. The first two chapters present the context of the thesis, namely the powering of an autonomous sensor network, and review the scientific aspects of inkjet and photovoltaic technologies. The third chapter presents the development of a state-of-the-art photovoltaic cell and its evolution towards a printable architecture at low annealing temperatures. The problem of the stability of photovoltaic cells with perovskite is also discussed. The last part presents the different aspects and problems of the inkjet printing of the three inner layers of a perovskite solar cell. At the end of this work the possibility of printing perovskite solar cells with efficiencies higher than 10% has been demonstrated, all in ambient conditions and at low temperature.
|
14 |
Fotovoltaický článek pro koncentrátorový systém / Photovoltaic cell for concentrator systemStraškraba, Vojtěch January 2013 (has links)
The subject of this master’s thesis is to introduce concentrator photovoltaic systems. Main subject of presented work are photovoltaic cells and their features and characteristics. The work deals with physical fundamentals of solar cells, type of cells and their specifics and discusses possible treatment for achieving better characteristics of concentrator systems. In the practical part is realized measurement and analysis of electrical characteristics of 9 different monocrystalline silicon cells. From those is the most efficient cell chosen for further use as reference cell.
|
15 |
Modul pro řízení a sběr dat z pyranometru / The module for control and data acquisition of PyranometersHalm, Martin January 2012 (has links)
This work deals with measuring of intensity solar radiation by pyranometer. In theory discusses the principle of solar radiation and its effects on photovoltaic cells. Also describes methods to measure different components of solar radiation. A task work is realize station for long time monitoring of global and diffuse components of solar radiation by pyranometer and measured values evaluace
|
16 |
Numerical analysis for efficiency enhancement of thin film solar cellsBaig, Faisal 01 April 2019 (has links)
[ES] Desde hace una década se esta investigando intensamente la forma de mejorar la eficiencia de conversión de energía (PCE) de las células solares de silicio (Si) y reducir sus precios. Sin embargo, a pesar de las mejoras obtenidas, la fabricación de células solares de Si sigue siendo costosa y puede rebajarse usando materiales en forma de capa fina. Por ello la búsqueda de materiales absorbentes alternativos, no tóxicos, abundantes en la naturaleza y con buenos rendimientos de conversión se ha intensificado en los últimos años. Entre los diferentes materiales absorbentes el sulfuro de estaño (SnS), con una banda prohibida de 1.3 eV cercana a la óptima, es un candidato adecuado para la conversión fotovoltaica. Pero para células experimentales de SnS el rendimiento alcanzado hasta ahora es de 4.6%, que es mucho menos que el PCE para dispositivos de silicio, mientras que entre otras células híbridas (orgánicas-no orgánicas) como la perovskita de metilamonio de plomo y yodo (MAPbI3) se demuestra que es un candidato adecuado con PCE que alcanza un valor del 23%. Aparte de la estabilidad, uno de los problemas para la comercialización de células de MAPbI3 es la naturaleza tóxica del plomo (Pb). Por este motivo, se ha utilizado el análisis numérico para revisar los parámetros de diseño de las células solares de perovskita híbrida sustituyendo el absorbente MAPbI3 por MASnI3 y estudiar el efecto del resto de parámetros de diseño en el rendimiento de estas células solares. Hay varios softwares de simulación disponibles que se utilizan para el análisis numérico de células solares. En este trabajo hemos usamos un software llamado "A Solar Cell Capacitance Simulator" (SCAPS), está disponible de forma gratuita y es muy popular entre la comunidad científica y tecnológica. Para lograr un diseño efectivo para una célula solar eficiente, se propuso una aproximación numérica basada en la mejora de la PCE de una célula solar experimental. Esto se hizo reproduciendo los resultados para la célula solar diseñada experimentalmente en un entorno SCAPS con estructura p-SnS / n-CdS con una eficiencia de conversión del 1,5%. Después de la reproducción de los resultados experimentales, el rendimiento del dispositivo se optimizó ajustando el grosor de la capa absorbente y la capa tampón, la el tiempo de vida de los portadores minoritarios, la concentración del dopado en las capas absorbente, tampón y en la capa de la ventana. Mediante la optimización gradual de los parámetros del dispositivo, se alcanzó un valor de 14.01% en PCE de células solares diseñadas con SCAPS con arquitectura p-SnS / n-CdS / n-ZnO. A partir del análisis, se encontró que la PCE de una célula solar depende en gran medida de la concentración de dopaje de la capa absorbente, el espesor de la capa absorbente y los defectos de la interfaz. Sobre la base de los resultados obtenidos, se realizó un análisis para determinar el efecto de la recombinación de la interfaz en el rendimiento de las células solares y cómo se puede controlar. Para realizar esta tarea, se realizó un análisis para la selección de la capa tampón adecuada para la célula solar de perovskita metilamonio de estaño y yodo (MASnI3) y se encontró que el PCE de la célula solar también depende de la alineación de la banda entre el absorbedor y la capa de tampón. Por otra parte, se ha propuesto una nueva estructura para la célula solar de perovskita libre de Pb (contacto posterior / MASnBr3 / MASnI3 /CdZnS / FTO) con un PCE de 18.71% para un espesor del absorbedor de 500 nm y una concentración de dopado en el aceptor de 1x1016 cm-3. Los resultados obtenidos en esta tesis proporcionarán una guía para que los investigadores experimentales puedan construir células solares más eficientes. / [CA] Des de fa una dècada s'està investigant intensament la forma de millorar l'eficiència de conversió d'energia (PCE) de les cèl·lules solars de silici (Si) i reduir els seus preus. No obstant això, tot i les millores obtingudes, la fabricació de cèl·lules solars de Si segueix sent costosa i pot rebaixar-se usant materials en forma de capa fina. Per això la recerca de materials absorbents alternatius, no tòxics, abundants en la naturalesa i amb bons rendiments de conversió s'ha intensificat en els últims anys. Entre els diferents materials absorbents, el sulfur d'estany (SnS), amb una banda prohibida de 1.3 eV propera a l'òptima, és un candidat adequat per a la conversió fotovoltaica. Però per a cèl·lules experimentals de SnS el rendiment assolit fins ara és de 4.6%, que és molt menor que el PCE per a dispositius de silici, mentre que entre altres cèl·lules híbrides (orgàniques-no orgàniques) com la perovskita de metilamonio de plom i iode ( MAPbI3) es demostra que és un candidat adequat amb PCE que arriba a un valor del 23%. A part de l'estabilitat, un dels problemes per a la comercialització de cèl·lules de MAPbI3 és la naturalesa tòxica del plom (Pb). Per aquest motiu, s'ha utilitzat l'anàlisi numèrica per revisar els paràmetres de disseny de les cèl·lules solars de perovskita híbrida substituint l'absorbent MAPbI3 per MASnI3 i estudiar l'efecte de la resta de paràmetres de disseny en el rendiment d'estes cèl·lules solars. Hi ha diversos programaris de simulació disponibles que s'utilitzen per a l'anàlisi numèric de cèl·lules solars. En aquest treball hem fem servir un programari anomenat "A Solar Cell Capacitance Simulator" (SCAPS), està disponible de forma gratuïta i és molt popular entre la comunitat científica i tecnològica. Per aconseguir un disseny efectiu per a una cèl·lula solar eficient, es va proposar una aproximació numèrica basada en la millora de la PCE d'una cèl·lula solar experimental. Això es va fer reproduint els resultats per a la cèl·lula solar dissenyada experimentalment en un entorn SCAPS amb estructura p-SnS / n-CdS amb una eficiència de conversió de l'1,5%. Després de reproduir els resultats experimentals, el rendiment del dispositiu es va optimitzar ajustant el gruix de la capa absorbent y de la capa tampó, el temps de vida dels portadors minoritaris, la concentració del dopatge en les capes absorbent, tampó i en la capa finestra. Mitjançant l'optimització gradual dels paràmetres del dispositiu, es va assolir un valor de 14.01% en PCE de cèl·lules solars dissenyades experimentalment en SCAPS amb arquitectura p-SnS / n-CdS / n-ZnO. A partir de l'anàlisi, es va trobar que la PCE d'una cèl·lula solar depèn en gran mesura de la concentració de dopatge de la capa absorbent, el gruix de la capa absorbent i els defectes de la interfície. D'altra banda, es va realitzar una anàlisi per determinar l'efecte de la recombinació de la interfície en el rendiment de les cèl·lules solars i com es pot controlar. Per realitzar aquesta tasca, es va realitzar una anàlisi per a la selecció de la capa tampó adequada per a la cèl·lula solar de perovskita de metilamoni d'estany i iode (MASnI3) i es va trobar que el PCE de la cèl·lula solar també depèn de l'alineació de la banda entre l'absorbidor i la capa de tampó. / [EN] A decade of extensive research has been conducted to enhance the power conversion efficiency (PCE) of silicon (Si) solar cells and to cut their prices short. But still, the fabrication of Si solar cells are costly. So, to reduce the fabrication cost of the solar cell search for alternate earth abundant and non-toxic absorber materials is thriving. Among different absorber materials tin sulfide (SnS) is found to be a suitable candidate for the non-organic solar cell with a band gap of 1.3 eV. But the PCE achieved for SnS is 4.6% that is far less from the PCE of (Si), whereas among other organic non-organic solar cells like methylammonium lead halide perovskite ({\rm MAPbI}_3) is proven to be a suitable candidate with PCE reaching to a value of 23%. The problem with the commercialization of {\rm MAPbI}_3 is due to the toxic nature of lead (Pb). So, in dealing with these issues of solar cell numerical analysis can play a key role as numerical analysis allows flexibility in the design of realistic problem and experimentation with different hypotheses can easily be performed. Complete set of device characteristic can often be easily generated by consuming less amount of time and effort. Because of this reason numerical analysis was used to revisit solar cells design parameters and the effect of solar cell physical parameters on solar cell performance. There are various simulation software's available that are used for solar cell numerical analysis. Here in this work, we used Solar cell capacitance simulator (SCAPS) software, it is freely available and is most popular among the research community. To achieve effective design for efficient solar cell a numerical guide was proposed based on which PCE of an experimental designed solar cell can be enhanced. This was done by reproducing results for the experimentally designed solar cell in SCAPS environment with structure p-SnS/n-CdS having a conversion efficiency of 1.5%. After reproduction of experimental results device performance was optimized by varying thickness of (absorber layer, buffer layer), minority carrier lifetime, doping concentration (absorber, buffer), and adding window layer. By stepwise optimization of device parameters, PCE of an experimental designed solar cell in SCAPS with architecture p-SnS/n-CdS/n-ZnO was reached to a value of 14.01%. From the analysis, it was found that PCE of a solar cell is highly depended upon doping concentration of the absorber layer, the thickness of the absorber layer and interface defects. Based on the results evaluated an analysis was performed for tin based organic non-organic methylammonium tin halide perovskite solar cell ({\rm MASnI}_3) to find the effect of interface recombination on solar cell performance and how it can be governed. The reason for this transition from SnS to {\rm MASnI}_3 was because {\rm MASnI}_3 can be fabricated simply by spin-coating methylammonium iodide (MAI) over SnS layer. To perform this task analysis was performed for the selection of suitable buffer layer for Pb free methylammonium tin halide perovskite solar cell ({\rm MASnI}_3) and it was found that PCE of the solar cell is also depended upon band alignment between absorber and buffer layer. Based on the results a new structure was proposed for Pb free perovskite solar cell (Back\ contact/{\rm MASnBr}_3/{\rm MASnI}_3/CdZnS/FTO) with PCE of 18.71% for absorber thickness of 500 nm and acceptor doping concentration of 1x10^{16}\ {\rm cm}^3. The results achieved in this thesis will provide an imperative guideline for researchers to design efficient solar cells. / Baig, F. (2019). Numerical analysis for efficiency enhancement of thin film solar cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118801
|
17 |
Modeling of High Power Conversion Efficiency Thin Film Solar CellsKhattak, Yousaf Hameed 01 April 2019 (has links)
[ES] Las energía solar fotovoltaica ha emergido como una fuente de energía nueva y sostenible, que es ecológica y rentable si la producción es a gran escala. En el escenario actual, los dispositivos fotovoltaicos económicos y de alta eficiencia de conversión sin que se degraden sus componentes están bien posicionados para la generación de electricidad. Las células solares basadas en silicio dominan este mercado desde hace muchos años. Para la fabricación y producción de células solares basadas en silicio, se requieren sofisticadas técnicas de fabricación que hacen que el panel solar sea costoso. Por otra parte estan las células solares de película delgada, las cuales, debido a la intensificación de las capacidades de fabricación están ganando importancia. La tecnología de película delgada es una de las tecnologías más rentables y eficientes para la fabricación de células solares, y es un tema de intensa investigación en la industria fotovoltaica. La tecnología de película delgada es más económica que otras tecnologías porque los dispositivos utilizan menos material y están basados en varios tipos de materiales semiconductores que absorben la luz. Entre estos materiales, las células solares de kesterita que utilizan CZTS, CZTSe y sus aleaciones CZTSSe pueden convertirse en el reemplazo óptimo a los absorbentes de calcopirita. Estos materiales presentan unas características ópticas y eléctricas sobresalientes y tienen un gap óptico directo con una banda prohibida que oscila entre 1,4\ eV\ y 1,5\ eV y un coeficiente de absorción, \alpha>{10}^4{cm}^{-1}. Estas características han propiciado que las kesteritas esten siendo muy investigadas por la comunidad fotovoltaica de películas delgadas. De acuerdo con el límite de Shockley-Queisser, la eficiencia de conversión para una célula solar basada en CZTS\ es alrededor del 28%. Esta eficiencia es teóricamente posible mediante el ajuste de la banda prohibida, pero aún así, todavia no se ha podido alcanzar experimentalmente, probablemente debido a la falta de comprensión de las características de los dispositivos.Para una mejor comprensión de las características de los dispositivos, la modelación numérica puede jugar un papel importante al perimitir estudiar diferentes estructuras de dispositivos que pueden ahorrar tiempo y costos a la comunidad científico-técnica. En este trabajo, se ha llevado a cabo una modelazación numérica para estimar y analizar el efecto de parámetros físicos como el espesor y la concentración de dopado de la capa absorbente, la capa tampón y las capas ventana, además de estudiar el efecto de la temperatura y el efecto de la potencia de iluminación del sol en el rendimiento del dispositivo. El análisis numérico de los dispositivos se realizó con el software de simulación denominado "Solar Cell Capacitance Simulator" (SCAPS-1D). Para ello se analizó una estructura simple p-n-n^+ usando molibdeno como contacto posterior y FTO como ventana óptica y contacto frontal y siguiendo la secuencia de materiales Mo/CZTS/CdS/ZnO/FTO. A través del análisis, se estudió el rendimiento de las células solares con la variación en el espesor del absorbente para encontrar el espesor óptimo de la capa absorbente. También se estudió el efecto de la concentración del dopado y de la función de trabajo del metal. Después de la visualización de una estructura de dispositivo básica en SCAPS-1D, se modelo una célula solar experimental basada en CZTS. Los resultados de las células solares CZTS diseñados experimentalmente se simularon por primera vez en el entorno SCAPS-1D. Los resultados simulados de SCAPS-1D se compararon con los resultados experimentales. Después de la optimización de los parámetros de la celda, se incrementó la eficiencia de conversión de un dispositivo optimizado y, a partir del modelado, se descubrió que el rendimiento del dispositivo mejora al aumentar el tiempo de vida de los porta / [CA] L'energia solar fotovoltaica ha emergit com una font d'energia nova i sostenible, que és ecològica i rendible si la producció és a gran escala. En l'escenari actual, els dispositius fotovoltaics econòmics i de gran eficiència de conversió estan ben posicionats per a la generació d'electricitat neta i sostenible. Les cèl·lules solars basades en silici dominen aquest mercat des de fa molts anys. Per a la fabricació i producció de cèl·lules solars basades en silici, es requereixen tècniques de fabricació sofisticades que fan que el panell solar sigui costós. Per altra banda estan les cel·les solars de capa fina, que estan guanyant importància a causa de l'intensificació de les capacitats de fabricació. La tecnologia de capa fina és una de les tecnologies més rentables i eficients per a la fabricació de cel solars, i és un tema d'intensa investigació en la fotovoltaica industrial. La tecnologia de capa fina és més econòmica que altres tecnologies perquè els dispositius utilitzen menys material i estan basats en diversos tipus de materials semiconductors que absorbeixen la llum. Entre aquests materials, les cèl·lules solars de kesterita que utilitzen CZTS, CZTSe i les seves aleacions CZTSSe poden convertir-se en el reemplaçament òptim als absorbents de calcopirita. Aquests materials presenten unes característiques òptiques i elèctriques sobresalientes i tenen un gap òptic directe amb una banda prohibida que oscil·la entre 1,4eV i 1,5eV i un coeficient d'absorció, \alpha>{10}^4{cm}^{-1}. Aquestes característiques han propiciat que les Les kesteritas estan sent molt investigades per la comunitat fotovoltaica de capes primes. D'acord amb el límit de Shockley-Queisser, l'eficiència de conversió per a una cel·la solar basada en CZTS és d'aproximadament 28%. Aquesta eficiència és teòricament possible a través de l'ajust de la banda prohibida, però tot i així, encara no s'ha pogut assolir experimentalment, probablement a causa de la incomprensió del funcionament dels dispositius. Per a una millor comprensió de les característiques i funcionament dels dispositius, la modelització numèrica pot jugar un paper important al permetre estudiar diferents estructures de sistemes que poden estalviar temps i costos a la comunitat científica-tècnica. En aquest treball, s'ha dut a terme una modelització numèrica per estimar i analitzar l'efecte de paràmetres físics com l'espessor i la concentració de dopatge de la capa absorbent, la capa tampó i la capa finestra, a més d'estudiar l'efecte de la temperatura i l'efecte de la potència d'il·luminació del sol en el rendiment del dispositiu. L'anàlisi numèrica dels dispositius es va realitzar amb el programari de simulació denominat "Solar Cell Capacitance Simulator" (SCAPS-1D). Per això es va analitzar una estructura senzilla p-n-n^+ utilitzant molibdé com contacte posterior i FTO com a finestra òptica i contacte frontal i seguint la seqüència de materials Mo/CZTS/CdS/ZnO/FTO. A través de l'anàlisi, es va estudiar el rendiment de les cel·les solars amb la variació en l'espessor de l'absorbent per trobar l'espessor òptim de la capa absorbent. També es va estudiar l'efecte de la concentració del dopatge i de la funció de treball del metall. Després de la visualització d'una estructura de dispositiu bàsic en SCAPS-1D, es model una cel·la solar experimental basada en CZTS. Els resultats de les cel·les solars CZTS dissenyats experimentalment es simularen per primera vegada en l'entorn SCAPS-1D. Els resultats simulats de SCAPS-1D es van comparar amb els resultats experimentals. Després de l'optimització dels paràmetres de la celda, es va incrementar l'eficiència de conversió d'un dispositiu optimitzat i, a partir del modelatge, es va descobrir que el rendiment del dispositiu es millora a l'augmentar la vida útil dels minoritaris, cosa que es aconsegueix amb la incorporació d'un camp elèctric a la superfície del con / [EN] The solar cell has emerged as a newer and a relatively sustainable energy source, that is eco-friendly and cost-effective if the production is on a larger scale. In the current scenario, the economic and high-power conversion efficiency photovoltaic devices without degradation of materials are designed for the generation of electricity. The silicon-based solar cells dominated the market for many years. For the manufacturing and production of silicon-based solar cells, sophisticated fabrication techniques are required that make the solar panel costly. Due to intensification in manufacturing capabilities, thin film solar cells are gaining significance. Thin film technology is one of the most cost-effective and efficient technologies for the manufacturing of solar cells, and it is an excellent subject of intense research in the photovoltaic industry. Thin film technology is economical than other technologies because devices have relatively less material and are based on various types of light absorbing semiconductor materials. Among these materials, kesterite solar cells utilizing CZTS, CZTSe and their alloys CZTSSe are emerging as the most auspicious replacement for the chalcopyrite absorbers. The outstanding electrical and optical features having direct optical band gap ranges among 1.4eV to 1.5eV and large absorption coefficient \alpha\ >{10}^4{cm}^{-1} of CZTS have made it very interesting in the thin film community. According to the Shockley-Queisser limit, the optimum conversion efficiency of around 28\ % is theoretically possible from a CZTS based solar cell by tuning the band gap, but still, it is not experimentally possible to achieve 28% conversion efficiency from a solar cell due to lack of understanding of device characteristics. For a better understanding of device characteristics, numerical modeling can play a significant role by modeling different device structures that can save time and cost of the research community. In this work, numerical modeling was carried out for estimating and analyzing the effect of physical parameters such as thickness and doping concentration of absorber, buffer and window layers, temperature effect and effect of illumination power of the sun on device performance. Device modeling had performed on the dedicated simulation software "Solar Cell Capacitance Simulator" (SCAPS-1D). To achieve this task first, a simple {p-n-n}^+ structure for Mo/CZTS/CdS/ZnO/FTO had been analyzed with molybdenum as back contact and FTO as a front contact. Through analysis, it had been found that solar cell performance was affected by variation in absorber thickness, doping concentration, and metal work function. After visualization of a basic device structure in SCAPS-1D, CZTS based experimental solar cell had been modeled. Experimentally designed CZTS solar cell results were first simulated in SCAPS-1D environment. The SCAPS-1D simulated results were then compared with experimental results. After optimization of cell parameters, the conversion efficiency of an optimized device was increased and from modeling, it had been found that device performance was improved by improving minority carrier lifetime and integration of back surface field at the back contact. Based on the results presented, it was found that recombination in a solar cell can greatly affect the performance of a solar cell. Therefore, a new structure (Back\ contact/CFTS/ZnS/Zn(O,S)/FTO) was modeled and analyzed in which interface recombination is reduced by optimizing the band gap of Zn(O,S) layer. Based on different device structure modeling, it was found that solar cell with structure CFTS/ZnS/Zn(O,S)/FTO can exhibit an efficiency of 26.11% with optimized physical parameters like absorber thickness layer of 4\mu m and acceptor concentration density of 2\times{10}^{18}\ {cm}^{-3}. The proposed results will give a valuable guideline for the feasible fabrication and designing of high-power conversion efficiency solar cells. / Khattak, YH. (2019). Modeling of High Power Conversion Efficiency Thin Film Solar Cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118802
|
18 |
Développement de cellules photovoltaïques à hétérojonction de silicium et contacts interdigités en face arrière / Development of interdigitated back contact silicon heterojunction solar cellsDe Vecchi, Sylvain 01 July 2013 (has links)
Cette thèse est axée sur la fabrication et l’optimisation d’une nouvelle structure permettant théoriquement d’améliorer les performances des cellules à base de silicium cristallin. Cette nouvelle architecture de cellule utilise la technologie des hétérojonctions de silicium a-Si:H/ c-Si (Si-HJ) appliquée sur des structures à contacts interdigités en face arrière (IBC). Le potentiel de rendement des cellules IBC Si-HJ est supérieur à 25%, mais leur fabrication nécessite une localisation des couches de a-Si:H de dopage différent et de leurs métallisations. L’intégration de ces étapes dans un procédé simplifié utilisant des techniques industrielles (PECVD, pulvérisation, sérigraphie et laser) a été étudiée. De plus, une structure obtenue sans séparation entre le BSF et l’émetteur est présentée, permettant de réduire le nombre d’étapes de fabrication. Les avantages ainsi que les limites liés à cette architecture simplifiée ont été illustrés du point de vue expérimental et par simulation. Dans le cadre de ces travaux, le rendement maximum atteint sur les dispositifs IBC Si-HJ simplifiés de 25cm² est de 19% (substrats de type n), ce qui constitue le 3e meilleur résultat au niveau mondial. Les performances des cellules restent encore limitées par l’absorption des couches de a-Si:H utilisées pour la passivation de la face avant, et par la conductivité des couches dopées en face arrière. De nombreuses pistes d’amélioration sont explorées dans cette étude. Un procédé de métallisation innovant a également été élaboré pour le passage sur des substrats de grande taille (150cm²). Il permet de limiter les pertes résistives tout en offrant de la flexibilité au niveau de la géométrie des contacts. La mise en module de cellules ayant ce design de métallisation a ensuite été étudiée, et un module de 4 cellules IBC Si-HJ a pu être fabriqué. / This thesis studies the fabrication and the optimization of a new structure to enhance the efficiency of crystalline silicon based solar cells. This new cell design uses a-Si:H/c-Si heterojunction (Si-HJ) technology applied on interdigitated back contact structures (IBC). With IBC Si-HJ solar cells, the efficiency potential is theoretically higher than 25%. Their fabrication requires to pattern doped a-Si:H and the associated metallization on the same side. The implementation of those process steps has been carefully studied. All processes used in this study are potentially industrial (PECVD, sputtering, screen-printing, and laser) and the obtained structure without buffer layer between the BSF and the emitter allows to reduce fabrication steps. Issues linked to this design have been investigated. Within the frame of this work, the maximum efficiency reached on reduced size devices (25cm²) with n-type substrate and is 19% which is the 3rd best result worldwide. The cell performances are still limited by the absorption of front surface passivating layer (a-Si:H) and by the low doped layer conductivity. Several optimization ways are explored in this study. An innovative metallization process is then elaborated to allow large area solar cell fabrication while limiting resistive losses and offering more flexibility on metallized pattern. The interconnection and the encapsulation of cells with this metallization design have been illustrated and a module with 4 cells has been fabricated.
|
19 |
Studium změny vlastností perovskitovských fotovoltaických článků za dobu jejich života / Characterization of the perovskit photovoltaic cellsDvořák, Tomáš January 2017 (has links)
The thesis discusses the problematics of perovskite solar cells. The introduction deals with the history of the solar cells as the next part is dedicated to generations of them as well as to their principle and the variables measured in photovoltaic cells. The next part deals with perovskites, their properties and structure. Later the part about perovskite solar cells follows. The last part is dedicated to experiments which were executed on samples of perovskite solar cells.
|
20 |
Časové změny vlastností fotovoltaických článků / Time changes of the photovoltaic cells propertiesKvapil, Jakub January 2018 (has links)
The thesis is about the problematics of perovskite, production of perovskite structure and measurment of photovoltaic cells. The introduction deals with material properties and sctructure of perovskite. There is explained a problem of perovskit photovoltaic cells and production of perovskite structure. Then the measurement methods are explained, which are used for evaluation of photovoltaic cells properties.
|
Page generated in 0.0449 seconds