• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 17
  • 17
  • 4
  • 3
  • 1
  • Tagged with
  • 79
  • 79
  • 34
  • 31
  • 27
  • 18
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Plasmonic nanostructures and film crystallization in perovskite solar cells

Saliba, Michael January 2014 (has links)
The aim of this thesis is to develop a deeper understanding and the technology in the nascent field of solid-state organic-inorganic perovskite solar cells. In recent years, perovskite materials have emerged as a low-cost, thin-film technology with efficiencies exceeding 16% challenging the quasi-paradigm that high efficiency photovoltaics must come at high costs. This thesis investigates perovskite solar cells in more detail with a focus on incorporating plasmonic nanostructures and perovskite film formation. Chapter 1 motivates the present work further followed by Chapter 2 which offers a brief background for solar cell fabrication and characterisation, perovskites in general, perovskite solar cells in specific, and plasmonics. Chapter 3 presents the field of plasmonics including simulation methods for various core-shell nanostructures such as gold-silica and silver-titania nanoparticles. The following Chapters 4 and 5 analyze plasmonic core-shell metal-dielectric nanoparticles embedded in perovskite solar cells. It is shown that using gold@silica or silver@titania NPs results in enhanced photocurrent and thus increased efficiency. After photoluminescence studies, this effect was attributed to an unexpected phenomenon in solar cells in which a lowered exciton binding energy generates a higher fraction of free charge. Embedding thermally unstable silver NPs required a low-temperature fabrication method which would not melt the Ag NPs. This work offers a new general direction for temperature sensitive elements. In Chapters 6 and 7, perovskite film formation is studied. Chapter 6 shows the existence of a previously unknown crystalline precursor state and an improved surface coverage by introducing a ramped annealing procedure. Based on this, Chapter 7 investigates different perovskite annealing protocols. The main finding was that an additional 130°C flash annealing step changed the film crystallinity dramatically and yielded a higher orientation of the perovskite crystals. The according solar cells showed an increased photocurrent attributed to a decrease in charge carrier recombination at the grain boundaries. Chapter 8 presents on-going work showing noteworthy first results for silica scaffolds, and layered, 2D perovskite structures for application in solar cells.
52

Bicouches orientées de cristaux liquides colonnaires pour applications photovoltaïques

Thiebaut, Olivier 03 February 2011 (has links)
Grâce à leurs remarquables qualités de transport de charges et d’auto-organisation, les cristaux liquides colonnaires formés de molécules discotiques dérivées de colorants aromatiques sont des candidats prometteurs pour la réalisation de dispositifs photovoltaïques. Pour profiter à bien de ces propriétés, il est indispensable de maîtriser leur organisation en films minces. Un ancrage homéotrope avec les colonnes perpendiculaires au substrat est ainsi nécessaire pour conduire efficacement les charges aux électrodes. Cet alignement a été obtenu par transition d’ancrage entre un substrat solide et une cathode d’argent permettant d’obtenir des films ultra-minces (environ 25 nm d’épaisseur) homogènes orientés. Par ailleurs, une bicouche de composés discotiques intégralement alignée en ancrage homéotrope a été élaborée. A notre connaissance, ce travail constitue la première preuve de faisabilité d’une hétérojonction donneur – accepteur orientée constituée de cristaux liquides colonnaires. / Columnar liquid crystals made of discotic molecules derived from aromatic dyes are promising materials for the realization of photovoltaic devices thanks to their high charge mobility and their capacity to self-organize. In order to benefit from their anisotropic properties, it is necessary to control their organization in thin films. For example, a homeotropic anchoring where the columns are perpendicular to the substrate is required to carry the charges efficiently to the electrodes. Homogeneous homeotropically oriented ultra-thin films (approximately 25 nm) have been obtained by an anchoring transition between a solid substrate and a silver cathode. Moreover, a homeotropically oriented bilayer formed by discotic compounds has been achieved. This represents the first proof of principle of an organic heterojunction based on two oriented columnar liquid crystal layers.
53

Modélisation des phénomènes de transport solutal et étude d’un dispositif de brassage pour la purification du silicium photovoltaïque / Solute segregation and mechanical stirring modelling for photovoltaic silicon purification

Chatelain, Marc 28 October 2016 (has links)
Cette étude s’intéresse à la modélisation de la ségrégation des impuretés lors des procédés de solidification dirigée du silicium pour l’industrie photovoltaïque. Il s’agit d’un problème multi-physiques et multi-échelles qui nécessite des modèles efficaces pour pouvoir traiter des configurations industrielles en 3D. La première partie de l’étude porte sur le développement de fonctions de paroi solutales dans le but d’estimer la ségrégation sans résoudre numériquement la couche limite solutale. Un modèle analytique est alors utilisé pour estimer le paramètre convecto-diffusif à partir de la contrainte de frottement à l’interface solide/liquide. L’approche proposée consiste à coupler une simulation hydrodynamique de la convection dans la phase liquide et un calcul analytique de la ségrégation. Cette démarche est validée sur un cas de référence en 2D. Le modèle développé fournit une estimation pertinente de la concentration dans un lingot solidifié avec une vitesse imposée, y compris sur un maillage ne résolvant pas la couche limite solutale. La deuxième partie de l’étude concerne l’utilisation d’un système de brassage mécanique dans le but de favoriser la ségrégation des impuretés. Des simulations transitoires de brassage sont réalisées avec le logiciel FLUENT. Les résultats sont comparés à des mesures de champ de vitesse par PIV effectuées sur une maquette en eau, afin de valider le modèle hydrodynamique. La simulation de brassage est ensuite couplée à un calcul de ségrégation en régime quasi-permanent qui permet d’analyser l’influence de l’écoulement sur la couche limite solutale. Dans la dernière partie de l’étude, une simulation de solidification dirigée 3D instationnaire en régime de convection forcée, intégrant la thermique du four, est réalisée. Un modèle empirique de forces volumiques est alors proposé pour décrire l’écoulement lié au brassage dans le silicium liquide. Une première tentative d’estimation des ségrégations par l’approche analytique est ensuite mise en œuvre. / The present study focuses on solute segregation during photovoltaic silicon directional solidification. This multi-physics problem involves various spatial and temporal scales. The numerical simulation of this process requires efficient models, especially for 3D industrial configurations. In the first part of the study, solute wall functions are derived from a scaling analysis in order to estimate the segregations without numerical resolution of the solute boundary layer. The method is based on the coupling of an hydrodynamic simulation of convection in the liquid phase and an analytical segregation computation. The developed analytical model provides an estimation of the convecto-diffusive parameter from the wall shear-stress at the solid/liquid interface. A reference case in 2D with imposed solidification rate is used for validation purposes. The developed model provides a meaningful estimation of concentration fields in the ingots. In a second part, we focus on segregation optimization by a mechanical stirrer. Transient stirring simulations, using a sliding mesh technique, are achieved with FLUENT commercial software. Results are compared to PIV velocity field measurements performed on an experimental setup using water. A segregation computation in a quasi-steady regime is then implemented in the stirring simulation. The effect of the stirring parameters are directly observed on the solute boundary layer at the solid/liquid interface. In a third part, a transient solidification simulation, including furnace thermal conditions, is performed in a 3D configuration with forced convection. The flow generated by the impeller is described thanks to an empirical model based on body forces. A first attempt is finally made to retrieve segregations in the ingot with the developed analytical method.
54

Réalisation de nouvelles structures de cellules solaires photovoltaïques à partir de couches minces de silicium cristallin sur substrat de silicium préparé par frittage de poudres / Realisation of new solar cell structures prepared from crystalline silicon thin films on silicon substrates made by powder sintering

Grau, Maïlys 04 May 2012 (has links)
Les cellules photovoltaïques en couches minces de silicium cristallin sont des candidates prometteuses pour réduire le prix du watt-crête de l'énergie photovoltaïque, grâce à une très faible utilisation de silicium de haute pureté. Dans notre cas, les couches actives de silicium sont supportées par des substrats, de bas coût et compatibles avec les conditions de haute température nécessaires à une croissance cristalline rapide et de bonne qualité des couches. La société S’TILE développe ces substrats, par frittage à partir de poudres de silicium, et en recristallisant les plaquettes ainsi obtenues. Le but de cette thèse est de valoriser ce substrat pour l’industrie photovoltaïque et de démontrer qu’il est adapté à la fabrication de cellules solaires à bas coût et rendement élevé. Ces travaux utilisent le procédé d’épitaxie de silicium, qui est central pour fabriquer des cellules minces. Ils s’articulent autour de deux axes principaux. Le premier est la fabrication de cellules solaires et leur optimisation sur des substrats de référence monocristallins. Dans ce cadre, de nombreuses voies ont été explorées : l’utilisation de réflecteurs de Bragg en silicium poreux, l’optimisation du dopage de l’émetteur, la formation de gradients de dopage dans la base et l’utilisation de structures à émetteur en face arrière. Ces études ont permis d’évaluer le potentiel de ces différentes voies ; des résultats prometteurs pour l’amélioration du rendement de conversion des cellules sur couches minces ont été obtenus. Le second axe de la thèse est la fabrication de cellules sur les substrats frittés préparés par S’TILE et l’application des moyens développés dans le cadre du premier axe pour améliorer ces cellules. Les rendements encoura-geants obtenus ont ainsi démontré la faisabilité de cellules solaires sur les substrats réalisés par le procédé de frittage à bas coût développé par la société S’TILE. / Crystalline silicon thin-film solar cells are promising candidates to reduce the watt-peak prices of photovoltaic energy, thanks to a much smaller use of high purity silicon. In our case, the active layers of silicon are supported by substrates. These substrates have low production costs and are compatible with the high temperature process steps, which are necessary to a rapid and high-quality crystalline growth. The company S’TILE develops these substrates, by sintering silicon powders and recrystallizing the obtained wafers. The objective of this PhD thesis is to pinpoint the relevance of this substrate for the photovoltaics industry and demonstrate that it is adapted to the fabrication of solar cells with low cost and high efficiency. This work uses the epitaxy process, which is central to fabricate these thin-film cells. It is organized in two main axes. The first one is the fabrication of solar cells and their optimization on monocrystalline reference substrates. Several optimization pathways have been tested: the use of porous silicon Bragg reflectors, the optimization of emitter doping, the base variable doping and the use of rear emitter structures. The studies permitted to unveil the potential of each pathway; promising results were obtained for the improvement of thin-film solar cell conversion efficiency. The second axis of the thesis is the cell fabrication on the substrates prepared by S’TILE and the application of the means developed in the first axis to improve these cells. Encouraging efficiencies have demonstrated the feasibility of solar cells on the substrates made by the low-cost process developed by S’TILE.
55

Procédés laser pour la réalisation de cellules photovoltaïques en silicium à haut rendement / Laser processing for high efficiency silicon solar cells

Poulain, Gilles 25 October 2012 (has links)
L'énergie photovoltaïque est promise à une forte croissance dans les prochaines années. Propre et renouvelable, elle possède en effet de sérieux atouts pour répondre aux grands enjeux posés par le réchauffement climatique et l'appauvrissement des ressources en énergie fossile. Elle reste néanmoins une énergie chère en comparaison des autres formes de production électrique. D'importants efforts de R&D doivent être mis en œuvre pour abaisser son coût et la rendre plus compétitive. Il existe d'ores et déjà dans les laboratoires des technologies permettant d'augmenter significativement le rendement des cellules solaires en silicium (qui représentent aujourd’hui l'essentiel du marché). Mais elles font appel le plus souvent à des procédés, comme la photolithographie, qui restent chères pour l'industrie photovoltaïque. Les technologies laser sont une voie envisagée pour répondre à ce problème. Sélectifs, sans contact et autorisant de hautes cadences, les procédés laser permettent de réaliser des structures avancées de cellules à moindre coût. Il existe ainsi une forte dynamique de recherche autour de ces procédés. Les traitements laser permettent d’usiner ou de modifier la matière, de façon rapide et fiable. Il est ainsi possible d’ablater sélectivement certains matériaux, de réaliser des tranchées ou des trous, ou encore de modifier des profils de dopage. Des architectures complexes deviennent ainsi accessibles sans recourir aux couteuses technologies de la microélectronique. C'est dans ce contexte que se déroule ce travail de thèse, financé par l'ADEME et la société SEMCO Eng., et s'inscrivant également dans le projet de l'Agence National pour la Recherche PROTERRA. Deux objectifs principaux ont motivé sa mise en place : développer un savoir-faire au laboratoire INL sur les technologies laser avec l'ambition de rejoindre les instituts leaders sur ces thématiques et transférer les procédés développés à l'équipementier SEMCO Eng. pour lui donner accès à une technologie aujourd'hui inédite dans l'industrie photovoltaïque française. Ces recherches ont porté sur les cellules photovoltaïques en silicium, dites de première génération, et se sont articulées autour de trois axes principaux : la modélisation de l'interaction laser matière, l'ablation sélective de diélectriques (notamment de la couche antireflet afin de permettre de nouvelles techniques de métallisation) et la réalisation de dopages localisés. Des cellules de grandes dimensions fabriquées en collaboration avec SEMCO Eng. et tirant parti de ces procédés ont permis d’obtenir des rendements en accord avec l’état de l’art (proche de 18 %). / Silicon solar cells still require cost reduction and improved efficiency to become more competitive. New architectures can provide a significant increase in efficiency, but today most of the approaches need additional fabrication steps. In this context, laser processing offers a unique way to replace technological steps like photolithography that is not compatible with the requirements of the photovoltaic industry. This PhD thesis will present two promising laser processes for silicon solar cells: selective laser doping and selective laser ablation. Laser-assisted diffusion of dopants is a promising way to produce at low cost advanced silicon solar cells with high efficiency. Indeed, selective emitters, which rely on high dopant concentration localized under the front electrical contacts are an effective way to reduce power losses at the front surface of silicon solar cells. Several laser-based techniques are competing to optimise the emitter geometry. One of the main approaches is to take advantage of the doping glass (usually P2O5 for p-type silicon solar cells) that is formed during the standard diffusion process. Selective laser ablation is an effective way to open the antireflection layer (SiNx) in order to perform alternative front side metallization. Indeed, in the industrial production of standard silicon solar cells, the front side metallization is made by screen printing of metal paste. This process scheme is very cost efficient but it leads to serious limitations of the solar cell efficiency. Electrochemical metallization avoids these issues but requires a selective opening of SiNx, which is usually done by photolithography. Direct laser ablation allows to consider this approach at an industrial level. These processes are presented illustrated by research conducted during this PhD at INL in laser technologies for photovoltaics. An innovative and potentially self-aligned process is also discussed, where the laser is used to open locally the antireflection and passivation coating, and at the same time, achieve local phosphorus diffusion. Moreover solar cells results above 18% have been obtained thanks to a selective emitter structure achieved with selective laser doping.
56

Élaboration du Ge mésoporeux et étude de ses propriétés physico-chimiques en vue d’applications photovoltaïques / Elaboration of mesoporous Ge and study of study its physical and chemical properties for photovoltaic applications

Tutashkonko, Sergii 13 September 2013 (has links)
Le sujet de cette thèse porte sur l’élaboration du nouveau nanomatériau par la gravure électrochimique bipolaire (BEE) — le Ge mésoporeux et sur l’analyse de ses propriétés physico-chimiques en vue de son utilisation dans des applications photovoltaïques. La formation du Ge mésoporeux par gravure électrochimique a été précédemment rapportée dans la littérature. Cependant, le verrou technologique important des procédés de fabrication existants consistait à obtenir des couches épaisses (supérieure à 500 nm) du Ge mésoporeux à la morphologie parfaitement contrôlée. En effet, la caractérisation physico-chimique des couches minces est beaucoup plus compliquée et le nombre de leurs applications possibles est fortement limité. Nous avons développé un modèle électrochimique qui décrit les mécanismes principaux de formation des pores ce qui nous a permis de réaliser des structures épaisses du Ge mésoporeux (jusqu’au 10 um) ayant la porosité ajustable dans une large gamme de 15% à 60%. En plus, la formation des nanostructures poreuses aux morphologies variables et bien contrôlées est désormais devenue possible. Enfin, la maitrise de tous ces paramètres a ouvert la voie extrêmement prometteuse vers la réalisation des structures poreuses à multi-couches à base de Ge pour des nombreuses applications innovantes et multidisciplinaires grâce à la flexibilité technologique actuelle atteinte. En particulier, dans le cadre de cette thèse, les couches du Ge mesoporeux ont été optimisées dans le but de réaliser le procédé de transfert de couches minces d’une cellule solaire à triple jonctions via une couche sacrificielle en Ge poreux. / The subject of this thesis is the development of the new nanomaterial by bipolar electrochemical etching (BEE) - the mesoporous Ge and analysis of its physico-chemical properties for use in photovoltaic applications. The formation of mesoporous Ge by electrochemical etching has been previously reported in the literature. However, the important technological barrier of existing manufacturing processes was to obtain thick layers (above 500 nm) of the mesoporous Ge with perfectly controlled morphology. Indeed, the physico-chemical characterization of thin layers is much more complicated and the number of possible applications is very limited. We have developed an electrochemical model that describes the main mechanisms of formation of pores which allowed us to produce thick mesoporous structures of Ge (up to 10 um) with adjustable porosity in a range of 15% to 60% . In addition, the formation of porous nanostructures with well-controlled variable morphologies has now become possible. Finally, the mastery of these parametres has opened the extremely promising path towards the realization of porous multilayer structures based on Ge for many innovative and multidisciplinary applications. In particular, in the context of this thesis, the mesoporous layers of Ge were optimized for the purpose of performing a layer transfer process of a triple-junction solar cell via a sacrificial layer of porous Ge.
57

ZnO nanoparticles as a luminescent down-shifting layer for solar cells / Nanoparticules de ZnO comme couche luminescente down-shifting pour les cellules solaires

Zhu, Yao 08 October 2015 (has links)
Le but de cette thèse était de concevoir des matériaux à base de nanoparticules de ZnO qui puissent être utilisés de manière efficaces comme couche de down-shifting sur la face avant des cellules solaires photovoltaiques. Le défi principal a donc été d’obtenir des nanoparticules de ZnO avec un rendement de photoluminescence (PL QY) aussi élevé que possible. Diverses méthodes ont été et comparées utilisées pour la synthèse de nanoparticules de ZnO. Nous avons en premier lieu étudié des particules synthétisées par voie physique (le dépôt par jet d’agrégats de basse énergie, LECBD). Les particules résultantes démontrent une faible PL QY. Nous avons par la suite étudié des particules commerciales qui se sont comportées comme celles issues de la LECBD. Par conséquent, nous ne les avons pas retenues. Enfin, nous nous sommes concentrés sur des particules produites par voies chimique humide: la co-précipitation de l’acétate ou du sulfate de zinc en présence d’hydroxyde alcalin. Pour chaque cas, les paramètres de synthèses ont été variés pour optimiser les propriétés optiques en vue de l’effet de down-shifting. Avec un choix approprié de la nature (Li+) et de la quantité d’ions alcalins, le PL QY a été accru à 13 %. Nos résultats reproduisent l’état de l’art concernant cette technique. Cependant, la technique par hydrolyse s’est révélée bien plus intéressante. La seule réaction d’hydrolyse n’a pas initialement conduit à des particules très brillantes. Nous avons donc proposé une approche originale : l’ajout d’un acide faible, l’acide polyacrylique (PAAH), durant la synthèse. Alors que le PAAH a déjà été utilisé comme agent passivant de la surface de ZnO, son utilisation pendant la synthèse n’a jamais été tentée. Notre travail montre que en contrôlant la quantité et le poids moléculaire (longueur de chaine) du PAAH introduit pendant la croissance, un nanocomposite hybride très efficace à base de nanoparticules de ZnO et de PAAH peut être obtenu, avec un PL QY aussi élevé que 20 %. En mélangeant le PAAH avec son sel de sodium, PAANa, le nanocomposite présente un PL QY record de 50%, qui augmente jusqu’à 70 % après un mois. Les raisons physico-chimiques de cet accroissement sont discutées dans le manuscrit. Nos explications pointent vers un effet combiné de la taille, de la morphologie et de la composition. Dans la partie suivante, des nanoparticules de ZnO pouvant être dispersées dans l’eau ont été obtenues avec succès tout en maintenant leur rendement quantique entre 20 % et 34 % ; ce en utilisant un mélange de PAAH/PAANa de ratio volumique, de concentration et de volume réactionnel optimaux. Nous insistons sur la nécessité d’obtenir un compromis entre une bonne capacité de dispersion et un fort PL QY. Cette partie de la thèse pave la voie vers des applications industrielles ultérieures.Finalement, l’effet de down-shifting des nanoparticules luminescentes de ZnO a été simulé pout déterminer le gain potentiel de rendement de cellules photovoltaïques. / In this thesis, we aim at designing mechanically stable ZnO nanoparticle based materials as a luminescent down-shifting layer that can be processed on a scalable amount and deposited on standard solar cells at a reduced cost. The main challenge was thus to get ZnO nanoparticles with as high photoluminescence quantum yield (PL QY) as possible. Different methods have been used and compared to synthesize ZnO nanoparticles. We have first studied particles synthesized by a physical route (the Low Energy Cluster Beam Deposition relying on the adiabatic expansion of a plasma). The resulting particles did not exhibit a PL QY high enough to be interesting for down-shifting. We next investigated commercial particles which behaved as the LECBD ones. We consequently discarded them. Eventually, we concentrated on nanoparticles produced by wet chemistry. Two routes were explored: the conventional co-precipitation method of Zn acetate or sulfate in presence of an alkaline hydroxide and the hydrolysis of ZnEt2. For both cases the synthesis parameters have been tuned to optimize the optical properties for down-shifting process. When appropriately choosing the alkaline ion (Li+ instead of K+) nature and amount, the PL QY has been increased to 13 % in the co-precipitation method. Our results reproduce the state-of-the-art knowledge concerning this technique. The hydrolysis route proved to be even more interesting. The sole hydrolysis reaction did not lead to very bright particles. We have thus proposed an original strategy: the addition of a weak acid, the polyacrylic acid (PAAH) during the synthesis. If PAAH has been used previously as a passivating capping agent of ZnO, its use during the synthesis has never been tempted. Our work shows that by tuning the amount and molecular weight (chain length) of PAAH introduced during the synthesis, a very efficient hybrid nanocomposite consisting of ZnO nanopaerticles in a PAAH matrix can be obtained with PL QY as high as 20 %. When mixing PAAH to its sodium salt PAANa, the nanocomposite exhibits record values of PL QY of 50 %, increasing to 70 % over a month. The physico-chemical reasons for this enhancement are discussed in the manuscript. Our explanations point to a combined effect of the size, morphology and composition. In the subsequent part, ZnO NPs dispersible in water have been successfully achieved while maintaining their PL QY high, between 20 % - 34 %, using a PAAH/PAANa mixture at the optimal volume ratio, concentration, lengths and volume. We highlight the need to get a compromise between a good dispersibility and a high PL QY. This part of the thesis paves the way for the further industrial applications. Finally, the down-shifting effect of luminescent ZnO nanoparticles on solar cells has been simulated to obtain a potential enhancement of solar cell efficiency by the ZnO NPs down-shifting layer.
58

Compréhension des comportements électrique et optique des modules photovoltaïques à haute concentration, et développement d’outils de caractérisations adaptés / Understanding of optical and electrical behaviours of high concentration photovoltaic modules, and development of adapted characterization techniques

Besson, Pierre 04 February 2016 (has links)
Le travail de thèse effectué a pour objectif d'amener vers une meilleure compréhension des comportements électrique et optique des modules CPV, dans des conditions environnantes variables. La première partie est consacrée à l’étude de la performance des modules en conditions réelles de fonctionnement. Quatre technologies de module, toutes équipées de cellules triple-jonctions, mais de concentrateurs optiques différents, ont été testées en extérieur sur des périodes de un mois à deux ans. Les résultats montrent que la sensibilité à la température de lentille, la température de cellule et au spectre incident varie selon le type d'architecture optique. La sensibilité la plus importante à la température de lentille a été obtenue pour un dispositif sans optique secondaire. Le coefficient en température de la tension Voc a été calculé et varie entre les technologies. Enfin, les variations importantes de facteur de forme avec le spectre incident observées pour une technologie, mettent en évidence la nécessité d'étudier les phénomènes de non-uniformités d'irradiance sur la cellule. Dans une deuxième partie, le développement d’un banc de test en intérieur permettant de mesurer les performances électriques et optiques est présenté. Ce banc a pour objectif de permettre la reproduction des conditions réelles de fonctionnement des modules de façon contrôlée en intérieur. Un système d’imagerie est utilisé pour déterminer la distribution spatiale et spectrale d’irradiance sur la cellule. Associé à un traceur de courbes IV, il vise à caractériser les effets de flux non-uniformes sur la cellule. Le banc de mesure a pour avantage de découpler les paramètres d’études, telles que la température de la lentille et la température de la cellule, et permet ainsi de décorréler leurs effets respectifs sur l'ensemble optique-cellule, ce qui n’est que difficilement possible sur des mesures en extérieur. Le procédé de calibration et la validation du dispositif sont détaillés dans le manuscrit. Enfin, dans une dernière partie, le banc développé est utilisé pour caractériser trois différents dispositifs CPV : un sans optique secondaire, et deux avec des optiques secondaires différentes. Les impacts de la distance lentille-cellule et de la température de lentille sur les performances de la cellule sont quantifiés optiquement et électriquement. Les résultats montrent comment ces paramètres modifient la distribution de densités de courant des sous-cellules, et donc le comportement électrique du dispositif. Ils soulignent plus spécifiquement comment les non-uniformités spectrales et spatiales affectent les performances de la cellule pour les différents concentrateurs. Le dispositif sans optique secondaire montre une sensibilité importante à la température de la lentille et la distance optique primaire-cellule, qui se traduit par une perte de production d'énergie dans des conditions réelles de fonctionnement. / The goal of this doctoral thesis is to bring answers to a better understanding of the electrical and optical behavior of CPV modules, under different operating conditions. In the first part, a study on module performance under real conditions is presented. Using an outdoor automated test bench, the sensitivity of four different CPV module technologies to most operating conditions relevant to CPV systems has been studied, namely DNI, spectrum, cell and lens temperature and clearness of the sky. In order to isolate the influence of a single operation parameter, the analysis of outdoor monitoring data from one month to two years is performed. The results show how the optical design influences the sensitivity of the electrical parameters to the mentionned operating conditions. The effect of lens temperature on cell current has been found to be maximum for the CPV module without Secondary Optical Element. Also the $V_{oc}$ thermal coefficient was found to vary between module technologies. Finally, the important variations of the fill factor for one technology underlines the need of studying non-uniformities effects on the cell performance. According to the results observed outdoors, an indoor tool was developed in order to uncorrelate outdoor parameters. A test bench that measures multi-spectral irradiance profiles, through CMOS imaging and bandpass filters in conjunction with electrical $IV$ curves, is used as a mean to visualize and characterize the effects of chromatic aberrations and nonuniform flux profiles under controllable testing conditions. The bench allows decoupling the temperatures of the Primary Optical Element and cell allowing the analyze of their respective effects on optical and electrical performance. In varying the temperature of the Primary Optical Element, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle, or multi-junction current matching profiles can be quantified. Calibration procedures and validation process are detailed. Finally, the developed testbench is used for analyzing the behvaior of three different CPV devices : one without Secondary Optical Element, and two with different Secondary Optical Elements. The impacts of cell position and lens temperature on the cell performance are quantified optically and electrically. The results show how these parameters modify the current density distribution of the subcells, and hence the electrical behavior of the device. They underline more specifically how spectral and spatial non-uniformities affect the cell performance for the different devices. The device without SOE shows a strong sensitivity to lens temperature and POE-cell distance, that will correspond to a decrease of energy production under real conditions of operation.
59

Procédés innovants adaptés aux cellules photovoltaïques PERC en couches minces de silicium cristallin / Innovative processes adapted to PERC thin-film crystalline silicon solar cells

Gérenton, Félix 16 December 2016 (has links)
Le coût de fabrication des modules photovoltaïques est un point critique pour implanter l’énergie solaire dans le mix énergétique. L’un des moyens d’abaisser ce coût est la réduction de l’épaisseur de silicium utilisé pour la fabrication des cellules photovoltaïques. Il est techniquement possible de produire des cellules photovoltaïques en silicium cristallin d’une épaisseur de quelques dizaines de micromètres d’épaisseur seulement, bien que cela représente un défi à la fois pour le procédé de fabrication de telles cellules et pour leur optimisation. Celle-ci est différente des cellules d’épaisseur conventionnelle notamment par le besoin d’un piégeage optique et d’une passivation de surface de haut niveau. Cet aspect sera étudié au travers de deux structures : un réflecteur en face arrière de la cellule, et un procédé de texturisation innovant pour limiter la gravure du silicium de la cellule, déjà mince. Enfin, l’implantation du réflecteur dans des cellules photovoltaïques sera traitée. L’optimisation du réflecteur considéré pour des cellules minces en silicium cristallin a montré de très bonnes propriétés réfléchissantes et de passivation de surface, ainsi qu’une compatibilité avec l’ensemble des étapes du procédé de fabrication. Ensuite, la texturisation avancée développée dans ce travail a montré un gain potentiel important en photogénération pour des cellules de faible épaisseur. La caractérisation de ces structures a montré des performances optiques et électriques comparables à l’état-de-l’art. Enfin, la fabrication de cellules photovoltaïques d’épaisseur standard utilisant le procédé développé pour les cellules minces a montré le gain du réflecteur développé pour la face arrière par rapport à une structure classique de cellule. De plus, la réalisation de ces cellules avec le procédé destiné aux cellules minces a permis d’établir que les étapes non-standard du procédé sont compatibles avec l’obtention de cellules photovoltaïques performantes. / The cost of fabrication of photovoltaic modules is a critical figure for settling solar power into the energy mix. One way to lower this cost is to decrease silicon use in photovoltaic cells. It is technically possible to produce crystalline silicon solar cells only a few dozens of microns thick, although this represents a challenge both for their fabrication process and their optimization. This last one is different from cells of standard thickness, especially by the need of high level light trapping and surface passivation. Two structures will be studied in order to fulfill these aspects : a reflector on the rear side of the cell, and an innovative texturing process used to limit the etching of the already thin silicon absorber. Eventually, the implementation of the rear side reflector into photovoltaic cells will be discussed. The rear side reflector optimized for thin-film crystalline silicon solar cells has shown very good passivating and reflecting properties, as well as compatibility with the overall fabrication process. Moreover, the advanced texturation process developped in this work has shown a large potential gain in photogeneration for thin solar cells. These structures have been characterized and have shown a reflectivity and a passivation level coherent with the state-of-the-art. Finally, solar cells of standard thickness have been fabricated with the thin solar cells process, and have shown an improvement from the rear side reflector in comparison with a standard cell structure. Moreover, making these cells with the thin cells process has shown that the non-standard steps of this process are compatible with high-performance solar cells fabrication.
60

Identification and neutralization of lifetime-limiting defects in Czochralski silicon for high efficiency photovoltaic applications / Identification et neutralisation des défauts limitant les propriétés électriques du silicium Czochralski pour applications photovoltaïques

Letty, Elénore 19 October 2017 (has links)
Les cellules photovoltaïques à base de silicium cristallin représentent plus de 90% du marché photovoltaïque mondial. Des architectures de cellules à haut rendement de conversion sont actuellement développées. Pour atteindre leurs performances maximales, ces architectures nécessitent néanmoins une amélioration des propriétés électriques des substrats de silicium cristallin. Les objectifs de cette thèse sont d’identifier les défauts limitant les propriétés électriques de ces substrats, de comprendre les mécanismes menant à leur formation et de proposer des moyens permettant leur neutralisation. Les matériaux étudiés sont des plaquettes de silicium Czochralski de type n, généralement utilisé pour les applications à haut rendement. Le four de tirage Czochralski a d’abord été modélisé afin de comprendre comment le passé thermique subi par le lingot de silicium lors de la cristallisation affecte la génération des défauts. Ces travaux ont été confirmés via des confrontations avec des données expérimentales, en utilisant une méthode originale développée dans le cadre de ce travail. Nous avons ensuite étudié l’influence du budget thermique lié aux procédés de fabrication des cellules sur la population de défauts. Nous avons ainsi pu montrer que la nature des défauts limitant les propriétés électriques du silicium était grandement modifiée selon le procédé de fabrication de cellules utilisé. Nous avons en outre mis en évidence une dégradation inattendue des propriétés électriques du silicium Czochralski de type n sous illumination, liée à la formation d’un défaut volumique inconnu. Les conditions de formation et de suppression de ce défaut ont été étudiées en profondeur. Enfin, les principaux défauts limitant les propriétés électriques du silicium ayant été identifiés et les mécanismes menant à leur formation compris, nous proposons dans un dernier chapitre des nouvelles techniques de caractérisation permettant de détecter les plaquettes défectueuses en début de ligne de production de cellules photovoltaïques, et ce à une cadence industrielle. / Photovoltaic solar cells based on crystalline silicon represent more than 90% of the worldwide photovoltaic market. High efficiency solar cell architectures are currently being developed. In order to allow their maximal performances to be reached, the electronic properties of their crystalline silicon substrate must however be enhanced. The goals of the present work are to identify the defects limiting the electronic properties of the substrate, to understand the mechanisms leading to their formation and to propose routes for their neutralization. The studied materials are n-type Czochralski silicon wafers, usually used as substrates for high efficiency photovoltaic applications. The Czochralski puller was first modeled in order to understand how the thermal history experienced by the silicon ingot during crystallization affects the defects generation. This study were validated through the comparison with experimental data using an original method developed in the frame of this work. We then studied the influence of the thermal budget associated to solar cell fabrication processes on the defects population. We thus showed that the nature of lifetime-limiting defects was completely changed depending on the solar cell fabrication process. Besides, we evidenced an unexpected degradation of the electronic properties of n-type Czochralski silicon under illumination, related to the formation of an unknown bulk defect. The formation and deactivation features of this defect were extensively studied. Finally, the main limiting defects being identified and the mechanisms resulting in their formation understood, we propose in a last chapter new characterization techniques for the detection of defective wafers at the beginning of production lines at an industrial throughput.

Page generated in 0.0571 seconds